返回首页
智远网 > 短文 > 教案 > 正文

倒数的认识教案

2025/08/31教案

此篇文章倒数的认识教案(精选5篇),由智远网整理,希望能够帮助得到大家。

倒数的认识教案 篇1

学习目标:

一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

三、激情投入,挑战自我。

教学重点:求一个数倒数的方法。

教学难点:1和0倒数的问题。

教学设计:

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)

就先聊到这儿吧?好,上课!

一、导入:

同学们,在上数学课之前,老师想考你一个语文知识,怎么样?(出示杏和呆)看到这两个字,你发现了什么?

生:上下两部分调换了位置,变成了另一个字

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

二、合作探究:

(一)揭示倒数的意义

1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解互为的?你能用举例子的方法来说明吗?(生答)

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说老师是你的朋友,你是老师的朋友,我们俩是双方面的。

(二)小组探究求一个倒数的方法

1.出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

师板书:求倒数的方法: 分数的分子、分母交换位置

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的`方法可以先把整数写成分母是1的分数,再找倒数。

2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3.出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为11=1根据乘积是1的两个数互为倒数,所以1的倒数是1)

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

4.探讨带分数、小数的倒数的求法

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。

你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

发现1:带分数的倒数都(小于)本身;

发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1.想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2.(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结

今天学习了什么?我们一起回顾总结出来好吗?

《倒数的认识》教学反思:

本节课一开始创设让学生找朋友的情境,通过此活动帮助学生理解互为的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。

倒数的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对倒数的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

倒数的认识教案 篇2

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的'倒数的求法。

教具准备:课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“XXXX为好朋友(也可以说XXXX好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(XXXX为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一。…………

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

倒数的认识教案 篇3

教学目标:

1. 通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。

2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。

3.培养学生推理和概括能力。

教学重点:理解倒数的意义,会求一个数的倒数。

教学难点:0为什么没有倒数。

教学过程:

设疑与探究:

师:同学们,我们今天要来学习一个新知识,学好了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。

①什么是倒数?(倒数的意义是什么?)

②怎样求一个数的倒数?(倒数有什么特点?)

③1的倒数是什么?0有倒数吗?为什么?

设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。

反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。

(一)、揭示倒数的意义

1、自学文本,初步形成概念

学生自学文本,同桌交流。

2、探讨错题,理解概念

师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)

①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )

生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)

②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )

生:因为倒数是两个数,而这里是三个数。(板书两个数)

③因为2/55/2=1,所以2/5是倒数。( )

生:因为倒数是两个数相互依存的关系。(板书互为倒数)

进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。

设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。

反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。

评价与生成:

3、多种练习,深化概念

(1)口头回答

3/4( )=1,( )6/5=1,7( )=1

设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。

(2)模仿创作

师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)

师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)

设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。

反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。

(3)师生互说互猜

师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)

师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?

您现在正在阅读的小议“倒数的认识”教学概念课文章内容由收集!本站将为您提供更多的精品教学资源!小议“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。

反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的.有效生成资源。同时一句老师比你们更厉害一下子触动了他们的情绪,很多学生表示我们也能,进而很好的调动了课堂。

(二)、探索求一个数的倒数的方法。

1、观察式子,发现特点,归纳方法

学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)

追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?

学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。

师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)

设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。

反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。

2、解疑难点(求整数、带分数,小数的倒数)

师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?

4?(生:把整数看作分母是1的分数)

1又3/7呢?(生:先化成假分数)

0.5呢?(生:化成分数)

老师根据学生的回答,板书具体的例子。

3、师:那1 的倒数是几呢? 0有倒数吗?为什么?

生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0.

4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。

生齐读求一遍数倒数的方法。

设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。

反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。

运用与分享:

师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。

1、课本24页做一做:写出下列各数的倒数。

4/11,16/9,35,7/8,4/15

(规范:( )的倒数是( )。)

2、填空:

①7( )=15/2( )=()3又2/3=0.17( )=1

②一个数和它倒数的和是2,这个数是( )

③最小的质数的倒数是( )?

设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。

反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。

小结:

师:同学们通过今天的学习,你学到了什么?还有什么问题?

设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。

板书设计:

倒数的认识

乘积是1的两个数互为倒数 2/33/2=1

分子和分母交换位置 7/44/7=1

a/b的倒数是b/a 61/6=1

1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1

0的倒数是0(0( )=0) 0.1=1/10,1/1010=1

倒数的认识教案 篇4

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及“互为”的含义。

2.正确地求出一个数的倒数。

教学过程设计

一、创设情境,提出问题。

师:我们知道语言文字中有些字是可以倒过来写的。

比如:吴—吞

学生举例:杏—呆。

师:数学中有没有这种情况呢?

你能把4/7倒过来写吗?

板书:4/7--(7/4)8/3--(3/8)2--(1/2)

师:你能根据分子、分母的位置关系给这几组数取个名字吗?

生:倒数。

出示课题:倒数的认识。

二、教学倒数的意义.

(1)5/8×1/8 7/15×5/7 6×1/2 1/40×5

(2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2

教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,

第二组每个算式中两个数相乘的积都是1.)

教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”

教师举例说明什么叫做“互为倒数”.

3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一

个数的倒数,不能孤立地说某一个数是倒数.”

让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让

学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.

教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,

并让学生根据倒数的意义来检验是不是正确.

三、教学例题(求倒数的方法).

教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律

进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

出示例题.“怎样找出的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把的分子、分母调换位置就是的倒数.教师板书:

分子、分母调换位置

─────────→

的倒数就可以让学生自己写.

教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可

以看成分母是1的分数.)

“那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)

教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以

这个自然数作分母以1作分子的'分数.)

接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)

“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)

教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师

注意提醒学生把排除在外.

四、课堂练习。

写出下面各数的倒数:

4/13 9 1/7 25

反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

倒数的认识教案

在教学工作者开展教学活动前,时常需要用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么什么样的教案才是好的呢?下面是小编为大家收集的倒数的认识教案,欢迎阅读与收藏。

倒数的认识教案 篇5

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“XXXX为好朋友(也可以说XXXX好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(XXXX为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的`乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一。…………

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。