返回首页
智远网 > 短文 > 教案 > 正文

《正比例》教案

2025/08/31教案

此篇文章《正比例》教案(精选6篇),由智远网整理,希望能够帮助得到大家。

《正比例》教案 篇1

本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

1.抽象实际事例中的数量变化规律,形成正比例的概念。

例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的.生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

2.用图像直观表达正比例关系。

例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照A点表示1小时行80千米B点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

3.调动学生的积极性与数学活动经验,教学成反比例的量。

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

学生认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给学生多提供一些独立思考和合作交流的机会。如让学生观察例3的表格、填写试一试的表格,发现表格里的变量,解释两个变量的相关联;让学生联系已有的数量关系,研究总价与数量、每天运的吨数与需要的天数的变化,通过计算发现总价总是60元,一共运水泥的吨数总是72;让学生写出单价、数量和总价,每天运的吨数、需要的天数和运水泥总数的数量关系式,说说总价一定、运水泥的总吨数一定的理由;让学生阅读教材第65页关于单价和数量成反比例的那段话,交流自己的理解和体会;让学生试着用字母x、y、k表示反比例关系

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

《正比例》教案 篇2

教学要求

1.理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2.培养同学们用发展变化的观点来分析问题的能力。

3.培养同学们概括能力和分析判断能力。

教学重点

理解正比例的意义。

教学难点

引导同学们通过观察、发现思考两种相关联的量的变化规律。

教学过程

一、复习

1.已知路程和时间,求速度?

2.已知总价和数量,求单价?

3.已知工作总量和工作时间,求工作效率?

二、新知

1.教学例1

投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6

(1)出示下表,填表

一列火车行驶的时间和路程:

时间

路程

填表,思考:再填表中你发现了什么?

点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的`关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2.教学例2

(1)花布的米数和总价表:

数量1234567

总价8.216.424.632.841.049.257.4

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

(3)抽象概括正比例的意义。

①比较例1、例2,思考并讨论:这两个例题有什么共同点?

②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

③看书,进一步理解正比例的意义。

④如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

⑤根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

3.教学例3

(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例?

(2)学生讨论解答。

《正比例》教案 篇3

1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

2.学会判断成正比例关系的量。

3.进一步培养学生观察、分析、概括的能力。

教学重点和难点

理解正比例的意义,掌握正比例变化的规律。

教学过程设计

(一)复习准备

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(学生口述关系式、老师板书。)

(二)学习新课

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

幻灯出示:

一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

出示例1。(小黑板)

例1 一列火车行驶的时间和所行的路程如下表。

师:(看着表格)回答下面的问题。表中有几种量?是什么?

生:表中有两种量,时间和路程。

师:路程是怎样随着时间变化的?

生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

师:我们看一看他们之间是怎样变化的?

生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

生:路程由480千米变为420千米、360千米……

师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。(小黑板)

例2 某种花布的米数和总价如下表:

(板书)

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的.两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

(三)巩固反馈

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价( )。

(2)每小时织布米数一定,织布总米数和时间( )。

(3)小明的年龄和体重( )。

(四)课堂总结

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(五)布置作业

(略)

课堂教学设计说明

第一部分:复习三量关系,为本节内容引路。

第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

板书设计

《正比例》教案 篇4

教学内容:

P47~48,例7、正、反比例的比较。

教学目的:

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

教学过程:

一、复习

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题

2、学习例7

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并。

(6)用图表示例7中的.两种量的关系。

指导学生描点、连线

观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、正、反比例的特点(异同点)

由学生比、说

三、巩固练习

1、练一练第1、2题

2、P49第1题。

四、课堂:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业

P49第2题(1)(4)(5)(6)(9)

六、课后作业

1、P49第2题(2)(3)(7)(8)(10)

2、收集生活中正、反比例关系的量并分析。

《正比例》教案 篇5

教学内容:

P47~48,例7、正、反比例的比较。

教学目的:

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

教学过程:

一、复习

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题

2、学习例7

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线

观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的`?时间的值缩小呢?

用同样的方法观察右表。

3、正、反比例的特点(异同点)

由学生比、说

三、巩固练习

1、练一练第1、2题

2、P49第1题。

四、课堂:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业

P49第2题(1)(4)(5)(6)(9)

六、课后作业

1、P49第2题(2)(3)(7)(8)(10)

2、收集生活中正、反比例关系的量并分析。

《正比例》教案 篇6

课前准备

教师准备多媒体课件

教学过程

谈话导入

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……

(2)说一说比与比例有什么区别。

比例

各部分名称

0.9 ∶ 0.6=1.5

前项后项比值

基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。