返回首页
智远网 > 短文 > 教案 > 正文

公因数教学设计

2025/09/09教案

此篇文章公因数教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

公因数教学设计 篇1

教学目标

1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。

2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

教学重点

教学难点理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。

教学方法小组合作探究 练习法

教学准备小黑板出示复习题

教学过程:

一、温故而知新

1、温故——例1填一填、想一想。(让学生独立填写再反馈)

12的因数:1、2、3、4、6、12。

30的因数:1、2、3、5、6、10、15、30

2、引导学生思考:发现了什么?

让学生说出自己的感知,把话题集中到两个数的'相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。

重点思考:两个集合圈相交的部分应该填哪些因数?

组织学生展开讨论交流反馈,同时引出本节课的课题前言:两个数的公因数

二、新知探究

1、两个数的公因数和最大公因数

(1)讨论反馈自己的发现

(2)公因数和最大公因数的概念。

2、怎样找两个数的最大公因数

(1)由学生根据前面的探究过程,很自然地提出列举法

(2)介绍短除法求最大公因数的方法

板书介绍,并试求12和30的最大公因数

学生试一试求下列各组的最大公因数

16和24 6和12 7和9

独立完成后指名板演,再进行集体讲评

议一议:用短除法求最大公因数要注意些什么?

让学生在思考后明确:必须除到两商除了1再没有别的公因数为止

思考:还发现了什么?

引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?

3、介绍互质数

(1)互质数的意义

(2)对互质数的探讨

质疑:互质数都是质数吗?互质数可以是怎样的两个数?1既不是质数也不是合数,它能与别的非零自然数组成互质数吗?

分析:2和3 4和15 8和9 12和6 1和18 4和25

在学生议后,得出公因数只有1的两个数有哪些。

并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)

三、练习深化

求下列各组数中的最大公因数。

24和30 7和9 18和6 31和3 38和57

可以让学生独立思才,哪几组数可以直接得出?

四、全课总结

1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。

2、正确判断两个数的互质关系。

五、布置作业

公因数教学设计 篇2

教学内容

《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

设计思路

这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

教学目标

1、使学生理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的`公因数和最大公因数在现实生活中的应用。

3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

4、培养学生抽象、概括的能力。

重点难点

1、理解公因数和最大公因数的意义。

2、掌握求两个数的最大公因数的方法。

教具准备

多媒体课件、卡片

教学过程

一、导入

1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

2、分别写出16和12的所有因数。

二、教学实施

1、老师用多媒体课件演示集合图。

指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。

其中,4是最大的公因数,叫做他们的最大公因数。

2、完成教材第80页的“做一做”

先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

3、出示例2。怎样求18和27的最大公因数?

(1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

(2) 小组讨论,互相启发,再在全班交流。

(3) 老师用多媒体课件和板书演示方法

方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。

18的因数有:① ,2 ,③ ,6 ,⑨ ,18

方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

27的因数有:①,③,⑨,27

方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。

4、完成教材第81页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。

小结:求两个数最大公因数有哪些特殊情况?

⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。

⑵ 当两个数只有公因数1时,他们的最大公因数是1.。

三、课堂练习设计(多媒体课件出示)

选出正确答案的编号填在括号里

1、9和16的最大公因数是( )

A . 1 B. 3 C . 4 D. 9

2、16和48的最大公因数是()

A . 4 B. 6 C . 8 D. 16

3、甲数是乙数的倍数,甲乙两数的最大公因数是( )

A .1 B. 甲数C . 乙数D. 甲、乙两数的积

四、课堂小结

通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

五、留下疑问

有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?

六、课堂作业设计

教材82页第2题、第5题

板书设计

最大公因数

例2:怎样求18和27的最大公因数?

18的因数有:1 ,2 ,3 ,6 ,9 ,18

27的因数有:1 ,3 , 9 ,27

18和27的公因数有:1 ,3 , 9

18和27的最大公因数是9

公因数教学设计 篇3

设计说明

1.创设教学情境,揭示数学与现实生活的联系。

在教学中创设恰当的教学情境,可以起到激发学生学习热情和学习兴趣,提高课堂教学效率的作用。本设计注重联系生活实际,把数学知识设置在具体生活情境之中,让学生在具体情境中发现问题,引发学生的思考,从而明确公因数和最大公因数的概念,让学生体会到数学与生活的密切联系。

2.让学生自主探究,向学生渗透集合思想。

掌握科学的数学思想方法对提升学生的思维能力和数学学科的后续学习都具有十分重要的意义。在学习公因数的过程中,把8和12的公因数用集合图的形式表示出来,向学生渗透了集合思想,为学生以后的学习奠定基础。

课前准备

教师准备 卡片 PPT课件

教学过程

⊙复习导入

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

⊙创设情境,引出问题

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

学生自学教材60页例1。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

⊙求两个数的最大公因数

1.明确方法,提出要求。

师:先找两个数的.因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

4.反馈练习。

完成教材61页1题。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)

设计意图:通过观察、发现、设问引导学生探究求最大公因数的方法。通过交流思考、师生讨论让学生的推理能力得到充分发挥。

公因数教学设计 篇4

一、教学目标:

1、理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生抽象、概括的能力。

二、教学重难点:

理解公因数和最大公因数的意义。

三、教具准备:

多媒体课件,方格纸(每人一张)。

四、教学过程:

(一)复习导入

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

(二)创设情境,引出问题

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

(三)求两个数的最大公因数

1.明确方法,提出要求。

师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的.因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

4.反馈练习。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)

(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

(五)谈谈这节课你有什么收获?

公因数教学设计 篇5

教学内容:

第45—46页。

教学目标:

1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。

3、使学生能探索出解决问题的有效方法。

教学重、难点:

探索找两个数的公因数的方法。

教具准备:

实物投影仪等。

教学过程:

一、填一填。

1、呈现找公因数的一般方法:

(1)让学生分别找出12和18的因数,并交流找因数的方法。

(2)将这些因数填入两个相交的`集合。引导学生重点思考:两个集合相交的部分填哪些因数?

引出公因数和最大公因数的概念。

(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。

(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。

2、引导学生讨论其它的方法。

二、练一练。

1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。

2、第3题,学生独立完成。

3、第4题,让学生找出这几组数的公因数后,说一说有什么发现。这里第一行的两个数的公因数只有1,第二行的两个数具有倍数关系,对于这样有特征的数字,

4、让学生用自己的语言来表述自己的发现。

5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。

三、数学探索。

1、写出1、2、3、4、5、……、20等各数和4的最大公因数。

(1)先让学生填表,找出这些数与4的最大公因数。

(2)再根据表格完成折线统计图。

(3)组织学生观察表格,讨论“你发现了什么规律?”

2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。

四、总结:

谁能说一说找公因数的一般方法是什么?

板书设计:

找最大公因数

12=()×()=()×()=()×()

18=()×()=()×()=()×()

12的因数:18的因数:

公因数教学设计 篇6

一、教学目标:

1、理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生抽象、概括的能力。

二、教学重难点:

理解公因数和最大公因数的意义。

三、教具准备:

多媒体课件,方格纸(每人一张)。

四、教学过程:

(一)复习导入

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

(二)创设情境,引出问题

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的.因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

(三)求两个数的最大公因数

1.明确方法,提出要求。

师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

4.反馈练习。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)

(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

(五)谈谈这节课你有什么收获?