乘方教学设计
此篇文章乘方教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
乘方教学设计 篇1
教学目标:
知识与技能:学会用两步乘法计算解决问题。
过程与方法:经历从实际生活中发现问题、提出问题、解决问题的过程,通过合作、交流,寻找解决问题的不同方法。
情感态度价值观:感受数学在生活中的作用,激发学生学习数学的兴趣,培养学生进一步的数学应用意识。
课前准备:
学生明确行、列定义、乘和乘以。课件、红笔1只、每人3张的图片、拍一张浪费粮食的照片。
教学预设:
课前谈话:
(1)自我介绍。我姓周,不是猪。名叫俊杰,识时务者为俊杰。你们叫我什么?我跟你们数学老师有什么不同?今天我给大家上课,你们想说的时候敢不敢说?想笑的时候敢不敢笑?想睡的时候敢不敢睡?
学生做自我介绍,做学校的介绍。
(2)近段时间你们学校都举行了哪些活动?
一、创设情境,探究新知【约18分钟】
1、收集信息
师:你们的活动真是丰富多彩啊。最近,我们学校也举行了艺术节演出活动,我这里有一张艺术体操队同学表演的图片(课件出示1个方阵的图片)。
(1)猜猜看,这样一个方阵里面可能会有多少人?指名几个猜。
(2)这样猜很盲目,现在我给你提供这样一个信息(课件出示每行有4人),你认为会是多少人?
预设:学生可能会说是4的倍数。你们怎么都猜12、14、20这些数字呢?
预设:因为一行是4人,可能有5行。评价:你真会观察。根据学生回答课件出示文字“一行有4人”,
(3)到底谁猜对了呢?让我们来看一看,现在知道有几人了吗?根据学生回答课件出示“一个方阵有5行”,
师:看来,要想解决问题,必须收集必要的信息。
(4)参加演出的还有2个方阵(课件出示其余2个方阵)。
2、提出问题
问:根据这些信息,你能提出什么数学问题?
预设:3个方阵有多少人?这个问题你能自己解决吗?好的,看要求。
3、探究解决问题的方法
(1)安静独立地思考,想一想能有几种方法解决,把方法写在本子上。有困难的同学可以借助学具摆一摆。
(2)利用学具摆一摆,跟同桌说说你是怎样想的。
4、汇报交流。
(1)派代表上台展示算法,并用学具进行演示。代表先说算式,师板书,再讲思路。
边说思路边用笔在图片上划一划。
(2)谁听懂了他的意思?他的这种方法是先算什么的?你能上来指着图说一说吗?
(3)还有不同的解决办法吗?学生汇报,师同时板书:
①5×4=20(人)②4×3=12(人)③5×3=15(人)
20×3=60(人)12×5=60(人)15×4=60(人)
(4)刚才,我看见有人是这样写的:5×4×3=60(人),可以吗?
5、比较提升。
(1)师:通过刚才的小组交流,我们得出了这样3种方法。(课件出示3种方法)。
(2)观察这三种方法有什么相同和不同?
相同点预设:答案相同,都用乘法计算(揭题)
不同点预设:方法不一样。方法怎么不一样?第一种方法先求什么,再求什么?
评价语:真了不起!,同一个问题,能从不同的角度去思考,采用不同的方法来解决。生活中,像这样要用乘法来解决的'问题可多了。
二、联系实际,巩固提高
1、牛奶问题。(不同策略,解决问题)【约7分钟】
学校后勤部运来了一些牛奶给参加演出的同学,其中这一堆是送给参加演出的60名艺术体操队员的,如果每人一瓶,够吗?(课件出示堆成一堆的牛奶)。
(1)师:要解决这个问题,我们首先要查找信息。这里有信息吗?你能用简洁的语言给大家介绍一下这张图片的内容吗?
(2)有了信息,或许能解决这个问题了。请大家在本子上写一写。写完后,再想一想是否还有别的方法。
(3)指名上黑板写一写。
(4)全班交流。
评价语:同学们真棒,同一个问题,不仅能自己收集信息,还能够用不同的方法来解决。
2、浪费问题(选择信息,解决问题)【约7分钟】
(1)演出结束后,在同学们吃中餐的时候,老师在教室门口拍到这样一张浪费粮食的照片(课件出示浪费粮食的图片)。
(2)现在我想知道我们学校一个星期大约浪费多少千克粮食?需要调查哪些信息?
(3)师:好的,我已经收集了下列信息,要解决这个问题,你认为需要用到哪几个信息?
信息:1)共有6个年级。2)共有40个班级。3)每个班级每天大约浪费粮食3千克。4)一个星期有5天在学校就餐。
(4)这3个信息,能解决这个问题吗?
(5)学生独立计算。全班交流,利用计算结果,对学生及时进行节约教育。
评价语:看来提供有价值的信息非常重要,而且同一个问题还可以选择不同的信息来解决。
3、钢笔问题(方法最优化,解决问题)【6分钟】
(1)师:为了杜绝浪费粮食现象,学校准备举行节约资源教育活动,并准备购买钢笔奖励给节约之星,共有40个班级,每个班级有2名节约之星。
大队委员来到文具批发市场后,得到如下信息:
第一家商店:每支8元。
第二家商店:每支9元,如果购买100支或100支以上,每支6元。
(2)让你选择,你会选择到哪家去买?
(3)学生算好了,现场选择。选第一家的举手,选第二家的举手。
(4)全班交流。
评价语:我很欣赏你们,不但能用乘法解决问题,还能根据实际情况,灵活选择最优的方法。
四、课堂总结【约2分钟】
短短的四十分钟过去了,回顾一下,这节课我们做了什么?我们是怎么做的?先是收集信息,提出问题,然后选择有价值的信息,多策略地解决问题。
谢谢你们帮我解决了我们学校这么多的数学问题。我要代表瓯海区实验小学的全体同学欢迎你们到我们学校去做客。今天我们是新朋友,明天我们就是老朋友了。同学们,再见!
板书设计:
用连乘方法解决问题
①5×4=20(人)②4×3=12(人)③5×3=15(人)
20×3=60(人)12×5=60(人)15×4=60(人)
5×4×3=60(人)4×3×5=60(人)5×3×4=60(人)
乘方教学设计 篇2
教学目标
掌握积的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
积的乘方法则的运用。
难点
积的乘方法则的推导以及幂的混合运算。
教学过程
一、复习导入
1.幂的乘方法则是什么?
2.如果一个正方体的棱长为,那么它的体积是多少?
如何计算呢?下面我们就来探索积的乘方的运算法则。
二、新课讲解
探究新知
1.思考:
前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?
学生讨论,师生共同写出解答过程:
2.发现:
从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。
通过思考、交流,得出:(n是正整数)
要求学生完成法则的语言叙述和推导过程。
用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的`幂相乘。
推导过程:略
3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?
学生独立思考、互相交流,然后向全班汇报成果。
三、典例剖析
例1计算:
师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。
例2计算:
先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。
四、课堂练习
基础练习
1.计算:
2.下面的计算对不对?如果不对,应怎样改正?
3.计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。
提高训练:
3.计算:
五、小结
师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.P40第3题
2.计算:
乘方教学设计 篇3
教学目标
掌握积的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
积的乘方法则的运用。
难点
积的乘方法则的推导以及幂的混合运算。
教学过程
一、复习导入
1.幂的乘方法则是什么?
2.如果一个正方体的棱长为,那么它的体积是多少?
如何计算呢?下面我们就来探索积的乘方的运算法则。
二、新课讲解
探究新知
1.思考:
前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?
学生讨论,师生共同写出解答过程:
2.发现:
从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。
通过思考、交流,得出:(n是正整数)
要求学生完成法则的语言叙述和推导过程。
用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。
推导过程:略
3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?
学生独立思考、互相交流,然后向全班汇报成果。
三、典例剖析
例1计算:
师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的'良好习惯。
例2计算:
先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。
四、课堂练习
基础练习
1.计算:
2.下面的计算对不对?如果不对,应怎样改正?
3.计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。
提高训练:
3.计算:
五、小结
师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.P40第3题
2.计算:
乘方教学设计 篇4
【教学目标】
知识目标:经历探索积的乘方的运算发展推理能力和有条理的表达能力。学习积的乘方的运算法则,提高解决问题的能力。进一步体会幂的意义。理解积的乘方运算法则,能解决一些实际问题。
能力目标:能结合以往知识探究新知,熟练掌握积的乘方的运算法则。
情感目标:提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心。
【教学重点】
会用积的乘方性质进行计算
【教学难点】
灵活应用公式。
【课前准备】
自学课本P143-144
【教学课时】
1课时
【教学过程】
一、课前阅读。
自已阅读课本P143-144,尝试完成下列问题:
(1)(2a)3;
(2)(-5b)3;
(3)(xy)2;
(4)(-2x3)4
二、新课学习。
(一)引入:填空,看看运算过程用到哪些运算律?运算结果有什么规律?
(1)(ab)2=(ab)÷(ab)=(a÷a)÷(b÷b)=a()b();
(2)(ab)3_______=_______=a()b()。
(3)(ab)n=______=_______=a()b()
(二)阅读效果交流。
1、运用乘方的意义进行运算。
【教师点拨】关于第(2)、(3)运算,底数是ab,把它看成一个整体进行运算。用乘法交换律和结合律最后用同底数幂的乘法进行运算。
2、在观察运算规律的时候,从底数和指数两方面考虑。
【学生总结】我们可以得到的规律是:
符号表示:一般地,我们有(ab)n=anbn(n为正整数)
语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(三)阅读中学习。
1、例1、(1)(-5bc)3;(2)(xy2)2;(3)(-2xy3)4.
阅读后分析:本题是否是公式的直接应用?能否沿用公式的形式?
阅读后讲解:注意系数也要乘方,注意符号。公式拓展:(abc)n=anbncn
【教师点拨】在初学阶段,按照公式逐步运算。可与课前阅读题目相比较,考察题目间的联系和区别,运算的时候要注意符号。
2、例2、2(x3)2÷x3-(3x3)3+(5x)2÷x7
①阅读后分析:从形式上看,是公式的扩展,包含了多种公式的应用。并包含了多种运算。
②阅读后讲解:学会举一反三用联系的观点看问题。运算顺序要遵循先算乘方,后算乘除,最后算加减。
解:原式=2x6÷x3-27x9+25x2÷x7
=2x9-27x9+25x9=0
③阅读后反思:A、形式上包含积的乘方,也用到同底数幂的乘法。
B、“积”的形式,可以是几个多项式相乘。
C、用到整体思想。
【教师点拨】公式的拓展应用,上述例题易错点有系数忘记乘方、负数的乘方所得结果的符号。运算时注意运算顺序。
3、对应练习
(-2x3)3÷(x2)2+x13
①阅读后分析:本题既有用到积的乘方,又考察了同底数幂的乘法。按照运算法则运算即可,注意系数和符号。
②阅读后讲解:一般的运算顺序是先算乘除后算加减,有乘方的先算乘方。
③阅读后反思:本题是公式的灵活应用,要求同学首先知道运算顺序,其次选对公式。
【教师点拨】运算要认真仔细、熟记运算法则。
三、课堂拓展练习。
1、阅读下列材料,完成后面练习
an÷bn=(ab)n(n为正整数)
an÷bn=──幂的意义
=──乘法交换律、结合律
=(ab)n──乘方的意义
【教师点拨】积的乘方法则可以进行逆运算。即an÷bn=(ab)n(n为正整数)。
2、对应练习:
例1、(0.125)7×88
阅读后分析:仿照阅读材料,可做适当变形逆用公式。
阅读后解答:
解:原式=(0.125)7×87×8
=(0.125×8)7×8
=1×8
=8
对应练习(0.25)8×4102m×4m×()m
【教师点拨】活用公式、逆用公式是本章的一个重点。
例2、已知2m=3,2n=5,求23m+2n的值。
阅读后分析:按照公式的逆用,求23m+2n的值,由已知条件不能求出m,n的值,因此可以想到将2m,2n整体代入,这就需要逆用同底数幂乘法的运算性质和幂的乘方的运算性质。
阅读后讲解:学生黑板演示,学生纠错。
2、综合题
探讨如何简便运算:(0.04)20xx×[(-5)20xx]2
解法一:(0.04)20xx×[(-5)20xx]2解法二:(0.04)20xx×[(-5)20xx]2
=(0.22)20xx×54008=(0.04)20xx×[(-5)2]20xx
=(0.2)4008×54008=(0.04)20xx×(25)20xx
=(0.2×5)4008=(0.04×25)20xx
=14008=12004
=1=1
【教师点拨】逆用积的'乘方法则anbn=(ab)n可以化简一些复杂的计算。
【解题后反思】:这些练习用到了哪些知识点,体现了哪些数学思想和方法?
四、学习后小结。
重新浏览教材,说一说你有什么收获。
学生总结,教师强调三点:
1、积的乘方法则:积的乘方等于每一个因式乘方的积。即(ab)n=an÷bn(n为正整数)。
2、三个或三个以上的因式的积的乘方也具有这一性质。如(abc)n=an÷bn÷cn(n为正整数)。
3、积的乘方法则也可以逆用。即an÷bn=(ab)n,an÷bn÷cn=(abc)n,(n为正整数)。
【教师点拨】
1、总结积的乘方法则,理解它的真正含义。
2、幂的三条运算法则的综合运用
五、课后作业。
详见配套练习
乘方教学设计 篇5
教学目标
知识与技能:
1、会推导幂的乘方法则,并还能运用幂的乘方性质进行有关计算。 2、幂的乘方与同底数幂的乘法的正确区分。
过程与方法
通过对现实事物如正方体的体积的认识初步了解幂的乘方的形式,体会幂的乘方的应用价值。
情感﹑态度与价值观
通过师生共同交流,学生自主发言,渗透数学知识解决实际问题,激发学生学习的兴趣,帮学生树立自信心。
学情介绍
从学生的认知规律看,他们已经学习了乘方的意义﹑幂的意义以及
同底数幂的乘法,幂的乘方其实就是以上的结合,从教学中引导学生讨论交流。
内容分析
本节课是在前面学习的基础上进一步学习幂的乘方,让学生体会乘方运算是一种比乘法还要高级的运算,提高学生学习兴趣。
教学重难点
重点:幂的`乘方法则的理解和应用。
难点:幂的乘方与同底数幂的乘法运算性质的区分。
教学方法及教具准备
教学方法:思考—探索—发现—归纳教具准备:多媒体演示
教学过程
一﹑复习
1﹑学生叙述同底数幂的乘法运算法则,并用字母表示。 an=am+n(m﹑n都是正整数)
2﹑am·
用语言叙述为:同底数幂相乘,底数不变,指数相加。
3﹑复习练习⑴102×104=xx⑵an+1×an—1=xx_ ⑶2×2=xx ⑷x·x·x·x=xx_ n n 2 2 2 2
二﹑知识准备
1﹑一个正方体的棱长是10cm,则它的体积是多少?103=10×10×10 2﹑一个正方体的棱长是102cm,则它的体积是多少?3﹑100个104相乘怎么表示?又该怎么计算呢?(104)100=104×104×?×104(100个104)4﹑猜一猜m ··a(乘方的意义)(am)100=am·am· =am+m+···m(同底数幂的乘法法则)=a 100m(乘法的意义)
三﹑新授1﹑猜一猜
(am)n=amn(m,n为正整数)推导:
(am)n= am·am·
··am(n个am)=am+m+···+m(n个m)=a mn结论:幂的乘方的运算法则:(am)n=amn(m,n为正整数)用语言叙述:幂的乘方,底数不变,指数相乘。
2﹑师生共同完成。(1)(103)5(2)(a4)2(3)(am)2(4)—(x4)3解:
(1)原式=103×5=1015(2)原式=a4×2=a8(3)原式=a m×2 =a 2m(4)原式=—x12 3﹑学生练习
(1)(106)2(2)(am)4m是正整数(3)—(y3)2(4)(—x3)2(5)(an)3(6)—(x2)m 4﹑判断正误,错误的请改正。
(1)x·x=2x(2)x+x=x(3)a·a=a(4)—(a3)4=a12 4 2 6 2 2 4 3 3 3在讲解的过程中强调同底数幂的乘法与幂的乘方的区别,以及符号的注意。
5﹑计算
(1)x2·x4+(x3)2(2)(a3)3·(a4)3这两题是混合运算,先乘方后乘法。 6﹑公式的逆向应用m nn =an若(am)n=am则am =(am)n =(an)m例如:
x12=(x2)() =(x6)()=(x3)() =(x4)()=x7?x()=x?x() a3m=(a3)()=(am)()=a3·a()=am·a() 7﹑公式逆用的例题
1、若am=2,an=3,求① am+n的值。
② a 3m+2n的值。
2、若9×27x= 34x+1,求x的值。
四﹑知识比较五﹑板书设计六﹑课堂小结
本节课学习了幂的运算的第二种,幂的乘方,掌握新知识的同时,
但不能混淆,也就是说不要把幂的乘方与同底数幂的乘法搞混。另一方面掌握基本知识的同时也要学会灵活运用。
乘方教学设计 篇6
教学目的:
使学生理解指数是正整数的乘方的意义,并能正确进行有理数的乘方运算.
教学重点:
乘方的意义.
教学难点:
正确理解乘方、底数、指数的概念并合理运算.
教学过程
一、复习提问
1.乘方的定义及意义
这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,相同因数a叫做底数,相同因数的个数n叫做指数,an读作a的n次方.an看作是a的n次方的结果时,也可读作a的n次幂.
如:(—2)5,底数是—2,指数是5,读作—2的五次方或—2的五次幂.
一般地说,指数是几,就叫做底数的几次方或几次幂.说明:
(1)乘方是一种运算,是已知底数、指数求幂的运算.如(—2)5=—32是已知底数为—2,指数为5,求得幂是—32.an本身既是结果也是运算符号.同加、减、乘、除运算一样,乘方运算可认为是第五种运算.见下表:
(3)当n是2时,可读作平方;当n是3时,可读作立方.如:52读作5的平方;103读作10的立方.a2读作a的平方,a3读作a的立方.
练习:说出下列各数表示的意义,并指出其中的底数、指数、幂及它们的读法.
2.乘方运算:
提问:前边练习中各数的幂是如何计算出来的?回答:根据乘方的定义计算出来的.
根据乘方定义,an就是n个a相乘,所以,可以利用有理数乘法运算来进行有理数的乘方运算.例1计算:
解:(1)(—3)4=(—3)(—3)(—3)(—3)=81;(2)—34=—(3)(3)(3)(3)=—81;
说明:
(1)根据有理数乘法的运算法则,由(1)(3)不难归纳出乘方运算的符号法则:正数的任何次幂都是正数.负数的奇次幂是负数,负数的偶数次幂是正数.
(2)由(1)(2)看出(—3)4与—34不同,(—3)4读作—3的4次幂,是负数的偶次幂,结果是正数,—34读作3的4次幂的相反数,结果是负数;又:(—3)4的底数是—3,指数4是管着“—”号的,而—34的底数是3,指数4并不管“—”号.注意问题:负数的.乘方,在书写时一定要把整个负数(连同符号)用小括号括起来.
注意问题:分数的乘方,在书写时也要用括号把分数括起来.例
2计算:
(1)—3×24;(2)(—3×2)4.解:
(1)—3×24=—3×16=—48;(2)(—3×2)4=(—6)4=1296.
说明:算式中没有顺序符号的应按先乘方、后乘除、最后加减的顺序去做,有顺序符号的应先做括号内的.
例
3当x=—4,y=—3时,求下列各式的值:(1)(x+y)2;(2)x2—y2;(3(x—1)2+y;(4)x3—y3.解:当x=—4,y=—3时,
(1)(x+y)2=(—4—3)2=(—7)2=49;(2)x2—y2=(—4)2—(—3)2=16—9=7;
(3)(x—1)2+y=(—4—1)2+(—3)=25—3=22;(4)x3—y3=(—4)3—(—3)3=—64+27=—37.课堂练习
1.口答计算:
(—1)10;
(—1)7;83;(—5)3;
010;的偶次幂等于1.
2.计算:
(1)—(—2)4;(2)4·(—2)3;(3)32—23;(4)—32—(—2)2;
(5)—22+(—3)2;(6)(—2)2(—3)2;(7)—22×(—3)2;(8)—(— 3)2(—23);(9)—13—3(—1)3.三、小结
指导学生看书,强调正确理解乘方的意义,底数、指数、幂的概念;以及运算中注意的问题.
四、作业
五、教后记