高三数学教学设计
此篇文章高三数学教学设计(精选4篇),由智远网整理,希望能够帮助得到大家。
高三数学教学设计 篇1
教学要求:
探索并掌握等比数列的前n项和的公式;
结合等比数列的通项公式研究等比数列的各量;
在具体的问题情境中,发现数列的等比关系,能用有关知识解决相应问题。
教学重点:
等比数列的前n项和的公式及应用
教学难点:
等比数列的前n项和公式的.推导过程。
教学过程:
一、复习准备:
提问:等比数列的通项公式;
等比数列的性质;
等差数列的前n项和公式;
二、讲授新课:
1、教学:
思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?
分析:公比,因为,一个小时有60分钟
思考:那么经过一个小时,一共有多少个细胞呢?
又因为
所以,则=1152921504
则一个小时一共有1152921504个细胞
2、练习:
列1(解略)
列2(解略)
在等比数列中:已知求已知求
在等比数列中,xx,则xx
三、小结:等比数列的前n项和公式
四、作业:P66,1题
高三数学教学设计
作为一名默默奉献的教育工作者,编写教学设计是必不可少的,教学设计是实现教学目标的计划性和决策性活动。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的高三数学教学设计,希望能够帮助到大家。
高三数学教学设计 篇2
一、基本知识概要:
1.直线与圆锥曲线的位置关系:相交、相切、相离。
从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x或y的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。
2.弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。
焦点弦:若弦过圆锥曲线的焦点叫焦点弦;
通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。
3.①当直线的斜率存在时,弦长公式:
=或当存在且不为零时
,(其中(),()是交点坐标)。
②抛物线的焦点弦长公式|AB|=,其中α为过焦点的直线的倾斜角。
4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。
5.思维方式:方程思想、数形结合的思想、设而不求与整体代入的技巧。
6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,些直线才是曲线的切线。一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。
二、例题:
【例1】直线y=x+3与曲线()
A。没有交点B。只有一个交点C。有两个交点D。有三个交点
〖解〗:当x>0时,双曲线的渐近线为:,而直线y=x+3的斜率为1,10因此直线与椭圆左半部分有一交点,共计3个交点,选D
[思维点拔]注意先确定曲线再判断。
【例2】已知直线交椭圆于A、B两点,若为的倾斜角,且的长不小于短轴的长,求的取值范围。
解:将的方程与椭圆方程联立,消去,得
由,
的取值范围是
[思维点拔]对于弦长公式一定要能熟练掌握、灵活运用民。本题由于的方程由给出,所以可以认定,否则涉及弦长计算时,还要讨论时的情况。
【例3】已知抛物线与直线相交于A、B两点
(1)求证:
(2)当的面积等于时,求的值。
(1)证明:图见教材P127页,由方程组消去后,整理得。设,由韦达定理得在抛物线上,
(2)解:设直线与轴交于N,又显然令
[思维点拔]本题考查了两直线垂直的充要条件,三角形的面积公式,函数与方程的思想,以及分析问题、解决问题的能力。
【例4】在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围。
〖解〗设B、C关于直线y=kx+3对称,直线BC方程为x=-ky+m代入y2=4x得:
y2+4ky-4m=0,设B(x1,y1)、C(x2,y2),BC中点M(x0,y0),则
y0=(y1+y2)/2=-2k。x0=2k2+m,
∵点M(x0,y0)在直线上。∴-2k(2k2+m)+3,∴m=-又BC与抛物线交于不同两点,∴⊿=16k2+16m>0把m代入化简得即,
解得-1
[思维点拔]对称问题要充分利用对称的性质特点。
【例5】已知椭圆的一个焦点F1(0,-2),对应的'准线方程为y=-,且离心率e满足:2/3,e,4/3成等比数列。
(1)求椭圆方程;
(2)是否存在直线,使与椭圆交于不同的两点M、N,且线段MN恰被直线x=-平分。若存在,求的倾斜角的范围;若不存在,请说明理由。
〖解〗依题意e=
(1)∵-c=-2=,又e=∴=3,c=2,b=1,又F1(0,-2),对应的准线方程为y=-。∴椭圆中心在原点,所求方程为:
=1
(2)假设存在直线,依题意交椭圆所得弦MN被x=-平分,∴直线的斜率存在。设直线:由
=1消去y,整理得
=0
∵直线与椭圆交于不同的两点M、N∴⊿=4k2m2-4(k2+9)(m2-9)>0
即m2-k2-9<0①
设M(x1,y1)、N(x2,y2)
∴,∴②
把②代入①可解得:
∴直线倾斜角
[思维点拔]倾斜角的范围,实际上是求斜率的范围。
三、课堂小结:
1、解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便。
2、涉及弦的中点问题,除利用韦达定理外,也可以运用点差法,但必须是有交点为前提,否则不宜用此法。
3、求圆锥曲线的弦长,可利用弦长公式
=或当存在且不为零时
,(其中(),()是交点坐标。
再结合韦达定理解决,焦点弦长也可利用焦半径公式处理,可以使运算简化。
四、作业布置:教材P127闯关训练。
高三数学教学设计15篇
作为一名老师,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写呢?下面是小编整理的高三数学教学设计,欢迎阅读与收藏。
高三数学教学设计 篇3
我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学,这一切有点像水之于鱼一样。小编准备了高三文科数学第二轮复习教学计划,具体请看以下内容。
第二轮复习,教师必须明确重点,对高考考什么,怎样考,应了若指掌.只有这样,才能讲深讲透,讲练到位。
二轮复习中要进行模拟练习并提高模拟练习效果,模拟练习效果直接关系到最后的成绩。
(1)明确模拟练习的目的。考生一要检测知识的全面性,方法的熟练性和运算的准确性,发现自己的某些不足或空白,以求复习时有的`放矢;二要在平时考试中练就考试技能技巧,学会合理安排时间,达到既快又对;三要提高应试的心理素质,能够在任何状况下都心态平和,保证大脑对试题的兴奋度。
(2)严格有规律地进行限时训练。二轮复习时间紧,任务重,学生要进行限时训练,特别是强化对解答选择题、填空题的限时训练,并在速度体验中提高正确率,将平时考试当作高考,严格按时完成。
(3)先做练习后看答案。模拟练习时应该先模拟高考完成整套练习,最后对照答案给自己打分,甚至可以记录时间及分数,感受自己进步的过程。边看答案边做练习的过程是很难使自己的能力得到提升的。
(4)注重题后反思。出现问题不可怕,可怕的是不知道问题的存在。对错题从各种角度反复处理,争取相同的错误只犯一次及时处理问题,争取问题不过夜。
高三文科数学第二轮复习课程实施
备考复习资料编写要求
1、 科学性:知识必须准确无误,表述要严谨、科学;试题要精选,要紧扣提纲,不能有偏、怪、错题。
2、 系统性:条理清楚,有利于学生复习、巩固和练习,有利于教师课堂教学及反馈指导。
3、 针对性:针对本校、本年级学生实际,所选例题、练习题,及针对性训练应有层次性以适宜不同班学生的需求。所有例题、练习题及专题都应有答案提示。
4、 分文、理科编写。每个专题在实际实施前两周将电子稿件与文本一并提交编写组讨论,实施前一周打印分发。
应试复习教学要求
1. 关注学生思维发展
2. 关注学生获取知识的质量
3. 关注学生应用知识的灵活性和综合性
4. 关注学生数学意识、数学能力的形成
5. 关注学生数学思想、数学方法的形成
6. 关注学生个人情感发展与个性思维品质的形成
7. 关注学生学习状态、学习情绪、应试心理
8. 关注对学生学习情况的反馈指导与个别辅导
高三数学教学设计 篇4
一、指导思想
高三数学教学要以《全日制普通高级中学教科书》、20xx年普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本, 强化质量的意识,务实规范求创新,科学合作求发展。
二、教学建议
1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。
《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
注意08年高考的导向:注重能力考查,反对题海战术。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。08年的高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的`数学素养。
2、充分调动学生学习积极性,增强学生学习的自信心。
尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。
3、注重学法指导,提高学生学习效率。
教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。
4、高度重视基础知识、基本技能和基本方法的复习。
要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。
5、教学中要重视思维过程的展现,注重学生能力的发展。
在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的习惯。
6、高中的重点知识在复习中要保持较大的比重和必要的深度。
近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。
7、 重视通性、通法的总结和落实。
教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提高解决问题的能力。
8、 渗透数学思想方法, 培养数学学科能力。
《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。 我们在复习中要加强数学思想方法的复习, 如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。 以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。切忌空谈思想方法,要以知识为载体,润物细无声。
9、建议在每块知识复习前作一次摸底测试,(师、生)做到心中有数。坚持备课组集体备课,把握轻重缓急,避免重复劳动,切忌与学生实际不相符。
总之,我们要加强学习、研究,注重对学生、教材、教法和高考的研究,总结经验和吸取教训,搞好第一轮复习,为第二轮复习打好基础。
三、教学进度安排
9月底前完成高三选修课内容。期中考试的范围除选修课内容外,还要涉及到排列组合、二项式定理、概率、简易逻辑、函数、不等式、数列等内容。
期中考试之后复习:向量、三角、立体几何、 解析几何等内容.
第一轮的复习要以基础知识、基本技能、基本方法为主,为高三数学会考做好准备,不要赶进度,重落实。
四、进修活动