小学的乘法教案
此篇文章小学的乘法教案(精选5篇),由智远网整理,希望能够帮助得到大家。
小学的乘法教案 篇1
教学目标:
1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
2、过程与方法 回顾、整理、练习、订正。
3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。
教学重点:
引导学生找准单位1,分析应用题的数量关系。
教学难点:
让学生正确、独立地分析应用题的数量关系。
教具运用:
课件
教学过程:
一、创设情境,导入复习。
出示:我们学校的图书室里有故事书400本,连环画是故事书的 ,作文书是连环画的 。学校图书室里有有多少本作文书?
1、学生独立解决。
2、汇报交流做法。
3、提示课题:分数乘法的'整理和复习
二、回顾整理,建构网络。
1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)
2、展示自己整理好的分数乘法的知识。
3、小组合作,优化整理。(课件演示)
分数乘整数
求几个相同分数和的简便运算
计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)
一个数乘分数
求一个数的几分之几是多少
分数乘加、乘减及乘法运算定律的灵活运用
灵活运用运算定律,可以使计算简便。
乘法交换律:a.b=b.a;
乘法结合律(a.b).c=a.(b.c);
乘法分配律(a+b)。c=a.c+ b.c;
乘法分配律的逆运算:a.c+b.c=(a+b)。c
解决问题
1、求一个数的几分之几 是多少。
2、稍复杂的求一个数的几分之几是多少。
关系式:单位1的量(一个数)问题所对应的几分之几=所求问题
三、自主检评,完善提高。
1、计算下面各题,说一说分数乘法是怎样计算的?
2、下面各题怎样计算比较简便?
3、(1)骆驼驼峰中贮藏的脂肪,相当于体重的 ,一头体重225千克的骆驼,驼峰里含有多少脂肪?
(2)一头体重225kg的骆驼,驮着比它体重还多 的货物。它驮着的货物重多少千克?
4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?
(2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?
(3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?
四、课堂小结。
小学的乘法教案 篇2
教学设计思想
因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演、所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解、乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式、
首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征、然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力、接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题、
教学目标
知识与技能:
1、熟记完全平方公式,并能说出它的几何背景
2、会运用公式进行简单的乘法运算
3、提高进一步地掌握、灵活运用公式的能力
过程与方法:
1、经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力
2、通过对公式的推导及理解,养成思维严密的习惯
情感态度价值观:
感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣
二、学法引导
1、教学方法:学生探索与老师讲解相结合、
重点难点及解决办法
重点:会推导完全平方公式,并能运用公式进行简单的计算
难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义、
课时安排
1课时、
教具学具准备
投影仪或电脑、自制胶片、
教学过程设计
看谁算得快
(1)(x+2)(x+2)
(2)(1+3a)(1+3a)
(3)(-x+5y)(-x+5y)
(4)(-m-n)(-m-n)
相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?
引例:计算,学生活动:计算,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式、
或合并为:
教师引导学生用文字概括公式、
方法:由学生概括,教师给予肯定、否定或更正,同时板书、
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍、
【教法说明】
看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征、
证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2
公式特征:
(1)积为二次三项式;
(2)积中两项为两数的平方和;
(3)另一项是两数积的2倍,且与乘式中间的符号相同.
(4)公式中的字母a,b可以表示数,单项式和多项式
1、首平方,尾平方,积的2倍放中央.
2、结合图形,理解公式
根据图形完成下列问题:
如图:A、B两图均为正方形,(1)图A中正方形的面积为,(用代数式表示)
图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为、
(2)图B中,正方形的面积为,Ⅲ的面积为,Ⅰ、Ⅱ、Ⅳ的面积和为,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积、
分别得出结论:
学生活动:在教师引导下回答问题、
【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想、
3、例题
(1)引例:计算
教师讲解:在中,把x看成a,把3y看成b,则就可用完全平方公式来计算,即
【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础、
(2)例2运用完全平方公式计算:(2);(3)
学生活动:学生独立在练习本上尝试解题,2个学生板演、
【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力、
(3)(补充)例3你觉得怎样做简单:
①102
②99
思考
(a+b)与(-a-b)相等吗?
(a-b)与(b-a)相等吗?
(a-b)与a-b相等吗?
为什么?
4、尝试反馈,巩固知识
练习一(P90)
学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决、
5、变式训练,培养能力
练习二
运用完全平方公式计算:
(l)(2)(3)(4)
学生活动:学生分组讨论,选代表解答、
练习三
(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里、
甲的计算过程是:原式
乙的计算过程是:原式
丙的计算过程是:原式
丁的计算过程是:原式
(2)想一想,与相等吗?为什么?
与相等吗?为什么?
学生活动:观察、思考后,回答问题、
【教法说明】练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用、练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大、通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法、通过完成第(2)题使学生进一步理解与之间的'相等关系,同时加深理解代数中“a”具有的广泛意义、
7、总结、扩展
⑴学习了完全平方公式、
⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题、
8、布置作业
P91A组1,4,5
9、板书设计
乘法公式(2)
做一做几何背景引例1例2
(图)
平方差公式:探究结果学生板演
注意事项
用拼图理解乘法公式
用拼图理解乘法公式
初中生对符号的抽象性把握不够,乘法公式只能凭法则加以推算,学生对法则的将信将疑无以验证,拼图的出现无疑是一场及时雨,不仅可以使学生头脑中的疑雾顿散,而充分体现、渗透了数形结合的数学思想。请看下面几例:
一、用拼图理解公式的几何意义
理解1将边长为a的正方形纸片的剪出一个边是为b(b<a=的正方形,再将阴影部分剪一刀,拼成一个矩形或梯形。(1)你能完成拼图吗?(2)根据前后两个图形阴影面积关系,你能发现什么结论?
∴或
理解2将边长分别a、b的两个正方形和长宽为a、b的两个全等矩形拼成一个正方形。(1)怎样拼?(2)用不同形式表示拼成正方形面积,你觉得以此可验证什么公式?
分而算之:总而算之:
∴
理解3将大小相同的4块长、宽分别为a、b(a>b)长方形纸片拼成如图形状,从中你能发现(a+b)2与(a-b)2关系吗?
事实上,大正方形边长为a+b,小正方形边长为a-b,∴大正方形面积=(a+b)2,小正方形面积=(a-b)2
∴(a+b)2=(a-b)2+4ab,或者(a+b)2-4ab=(a-b)2或者(a+b)2-(a-b)2=4ab
二、典例剖析
例1在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如
图1(1),然后拼成一个梯形,如图1(2),根据这两个图形的面积关系,表明下列式子成立的是().
A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2D.a2-b2=(a-b)2
分析:从这个题目的条件中可以看出,把图1(1)图形经过剪切成为第图1(2)图形,得到一个等腰梯形,它的面积为(上底+下底)×高÷2,上底为2b,下底为2a,高为a-b,所以面积为:(2b+2a)(a-b)÷2=a2-b2,所以答案为:A.
解:A.
点评:利用割补图形和乘法公式来验证图形的面积,要求同学们有较强思维意识和对一些特殊图形面积公式的充分掌握.本题的关键是计算梯形面积.
例2如图2(1),阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即_____.
若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式:_____.
如图2(2),大正方形的面积可以表示为____,也可以表示为S=SⅠ+SⅡ+SⅢ+SⅣ,同时S=____,.从而验证了完全平方公式:_____.
分析:本题考查利用图形解释平方差和完全平方公式,体现数形几何思想。
如图2(1),阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;
若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式:(a+b)(a-b)=a2-b2.
如图2(2),大正方形的面积可以表示为(a+b)2,也可以表示为S=SⅠ+SⅡ+SⅢ+SⅣ,同时S=a2+ab+ab+b2=a2+2ab+b2.从而验证了完全平方公式:(a+b)2=a2+2ab+b2.
点评:本题通过简单的几何拼图验证了平方差公式,渗透了数形结合的数学思想,考查了学生的观察能力、分析研究能力及运算能力、
小学的乘法教案 篇3
【教学内容】
人教版小学数学三年级下册,两位数乘两位数不进位笔算乘法。教科书第63页例1及“做一做”
【教材分析】
本课是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
【教学目标】
1、使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。
2、培养学生准确计算的能力。
3、培养学生书写工整、认真计算的学习习惯及善于思考的学习品质。
【教学重点】
掌握笔算方法并正确计算。
【教学难点】
解决乘的顺序和第二部分积的书写位置。
【教具准备】课件
两位数乘两位数的笔算乘法
龙门中心小学白清霞20xx年4月9日
【教学内容】
人教版小学数学三年级下册,两位数乘两位数不进位笔算乘法。教科书第63页例1及“做一做”
【教学目标】
1、使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。
2、培养学生准确计算的能力。
3、培养学生书写工整、认真计算的.学习习惯及善于思考的学习品质。
【教学重点】
掌握笔算方法并正确计算。
【教学难点】
解决乘的顺序和第二部分积的书写位置。
【教具准备】
课件
【教学过程】
一、启动数学列车——复习铺垫
1、口算(指名说得数并说出怎样口算的)
30×40=80×30=900×10=60×70=21×20=88×10=13×30=32×20=
2、笔算:
24×3=38×2=
『设计意图:兴趣是最好的老师。新课开始,我便以准备带同学们去一个神秘的地方,充分调起学生的胃口,然后再以邀请
同学们乘坐数学列车的方式吸引孩子,让孩子在愉悦的氛围中,轻松完成准备题。』
二、进入儿童乐园——探究新知
1、出示课本63页例1的情境图
(1)学生观察:你收集到了哪些数学信息?提出了什么问题?
(2)要算一共付多少钱,该怎么列式呢?(24×12)为什么用乘法计算?
2、揭示课题:(两位数乘两位数)
3、分小组讨论,尝试计算
4、全班交流,整理算法
方法一:
把12分成2和10两部分,我们先求出2本书多少钱,再求出10本书多少钱,然后再把这两部分的钱加起来就是妈妈要付的钱。
12=2+10
24×2=48(元)
24×10=240(元)
48+240=288(元)
方法二:笔算
2 42 44 8
×2×1 0+2 4 0
4 82 4 02 8 8
5、设疑:刚才我们求妈妈买12本书用288元,计算时一共用了3个竖式,那能不能把这3个竖式给合并起来写成一个竖式呢?
6、生尝试用笔算方法计算
7、师生共同分析24乘12的笔算方法
2
4×1 2
4 8.24×2 的积 2 4 024×10的积
2 8 824×12的积
说明:在把两个积加起来的时候,个位上是计算8加0,0只起占位作用,为了方便,这个0可以省略不写,边说边把0擦去。
8、小结两位数乘两位数不进位乘法的笔算方法
(1)相同数位要对齐;
(2)用第二个因数各个数位上的数依次去乘第一个因数;用哪一位上的数去乘,积的末位就写在那一位的下面;
(3)把两次乘得的积加起来。
『设计意图:苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者,而在儿童的精神世界中,这种需要特别强烈。”为此,我创设了有趣的教学情境,引导学生主动探索、研究算理与计算方法,让孩子在不断的探究与交流过程中理解算理,掌握了两位数乘两位数的笔算方法。学生在操作探究过程中,也培养了合作意识,口头语言表达能力,张扬了自己的个性。』
三、畅游儿童乐园——巩固提升
1、计算密码:
完成课本63页的做一做
2、避开陷阱(每条路上都有一道题,如果错了说明有陷阱,对了可以顺利通过。)
2 13 32 3
╳2 3╳1 3╳3
26 39 94 64 23 36 9
1 0 53 2 97 3 6
3、进入老虎园解决问题
老虎每秒跑32米,21秒跑多少米?
4、请你当个小雷锋,计算出正确的门票收入
2 ■
╳■ 4
■ 8
■ 6
7 ■ 8
动物园的阿姨把今天的收入清单弄脏了,你能帮她算出今天的门票收入吗?
『设计意图:练习是数学学习中巩固新知,形成技能、发展思维,提高学生分析、解答能力的有效手段。本环节通过闯迷宫、避陷阱等游戏来调动学生学习的积极性,让学生在“乐”中练,加深了学生对新知识的理解和掌握。』
四、回顾反思
这节课你学到了什么?关于两位数乘两位数的笔算乘法你还有什么不清楚的吗?
『设计意图:课尾对本课知识及时进行回顾反思,可以加深学生对法则的理解、对法则的应用,更好的领会两位数乘两位数笔算乘法的计算方法。』
五、布置作业
完成练习十五第
1、2题
六、板书设计 两位数乘两位数笔算乘法
2 4 × 1 2 =288(元)
2 4
4 8 2 4 × 2的积
2 4 × 1 0的积 2 8 8 2 4 × 1 2的积
答:一共要付288元。
小学的乘法教案
作为一位杰出的老师,通常会被要求编写教案,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?以下是小编帮大家整理的小学的乘法教案,欢迎阅读,希望大家能够喜欢。
小学的乘法教案 篇4
教学设计思想
因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演、所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解、乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式、
首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征、然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力、接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题、
教学目标
知识与技能:
1、熟记完全平方公式,并能说出它的几何背景
2、会运用公式进行简单的乘法运算
3、提高进一步地掌握、灵活运用公式的能力
过程与方法:
1、经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力
2、通过对公式的推导及理解,养成思维严密的习惯
情感态度价值观:
感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣
二、学法引导
1、教学方法:学生探索与老师讲解相结合、
重点难点及解决办法
重点:会推导完全平方公式,并能运用公式进行简单的计算
难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义、
课时安排
1课时、
教具学具准备
投影仪或电脑、自制胶片、
教学过程设计
看谁算得快
(1)(x+2)(x+2)
(2)(1+3a)(1+3a)
(3)(-x+5y)(-x+5y)
(4)(-m-n)(-m-n)
相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?
引例:计算,学生活动:计算,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式、
或合并为:
教师引导学生用文字概括公式、
方法:由学生概括,教师给予肯定、否定或更正,同时板书、
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍、
【教法说明】
看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征、
证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2
公式特征:
(1)积为二次三项式;
(2)积中两项为两数的平方和;
(3)另一项是两数积的2倍,且与乘式中间的符号相同.
(4)公式中的字母a,b可以表示数,单项式和多项式
1、首平方,尾平方,积的2倍放中央.
2、结合图形,理解公式
根据图形完成下列问题:
如图:A、B两图均为正方形,(1)图A中正方形的面积为,(用代数式表示)
图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为、
(2)图B中,正方形的面积为,Ⅲ的面积为,Ⅰ、Ⅱ、Ⅳ的面积和为,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积、
分别得出结论:
学生活动:在教师引导下回答问题、
【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想、
3、例题
(1)引例:计算
教师讲解:在中,把x看成a,把3y看成b,则就可用完全平方公式来计算,即
【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础、
(2)例2运用完全平方公式计算:(2);(3)
学生活动:学生独立在练习本上尝试解题,2个学生板演、
【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力、
(3)(补充)例3你觉得怎样做简单:
①102
②99
思考
(a+b)与(-a-b)相等吗?
(a-b)与(b-a)相等吗?
(a-b)与a-b相等吗?
为什么?
4、尝试反馈,巩固知识
练习一(P90)
学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决、
5、变式训练,培养能力
练习二
运用完全平方公式计算:
(l)(2)(3)(4)
学生活动:学生分组讨论,选代表解答、
练习三
(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里、
甲的计算过程是:原式
乙的计算过程是:原式
丙的计算过程是:原式
丁的计算过程是:原式
(2)想一想,与相等吗?为什么?
与相等吗?为什么?
学生活动:观察、思考后,回答问题、
【教法说明】练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用、练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大、通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法、通过完成第(2)题使学生进一步理解与之间的相等关系,同时加深理解代数中“a”具有的广泛意义、
7、总结、扩展
⑴学习了完全平方公式、
⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题、
8、布置作业
P91A组1,4,5
9、板书设计
乘法公式(2)
做一做几何背景引例1例2
(图)
平方差公式:探究结果学生板演
注意事项
用拼图理解乘法公式
用拼图理解乘法公式
初中生对符号的抽象性把握不够,乘法公式只能凭法则加以推算,学生对法则的将信将疑无以验证,拼图的出现无疑是一场及时雨,不仅可以使学生头脑中的疑雾顿散,而充分体现、渗透了数形结合的'数学思想。请看下面几例:
一、用拼图理解公式的几何意义
理解1将边长为a的正方形纸片的剪出一个边是为b(b<a=的正方形,再将阴影部分剪一刀,拼成一个矩形或梯形。(1)你能完成拼图吗?(2)根据前后两个图形阴影面积关系,你能发现什么结论?
∴或
理解2将边长分别a、b的两个正方形和长宽为a、b的两个全等矩形拼成一个正方形。(1)怎样拼?(2)用不同形式表示拼成正方形面积,你觉得以此可验证什么公式?
分而算之:总而算之:
∴
理解3将大小相同的4块长、宽分别为a、b(a>b)长方形纸片拼成如图形状,从中你能发现(a+b)2与(a-b)2关系吗?
事实上,大正方形边长为a+b,小正方形边长为a-b,∴大正方形面积=(a+b)2,小正方形面积=(a-b)2
∴(a+b)2=(a-b)2+4ab,或者(a+b)2-4ab=(a-b)2或者(a+b)2-(a-b)2=4ab
二、典例剖析
例1在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如
图1(1),然后拼成一个梯形,如图1(2),根据这两个图形的面积关系,表明下列式子成立的是().
A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2D.a2-b2=(a-b)2
分析:从这个题目的条件中可以看出,把图1(1)图形经过剪切成为第图1(2)图形,得到一个等腰梯形,它的面积为(上底+下底)×高÷2,上底为2b,下底为2a,高为a-b,所以面积为:(2b+2a)(a-b)÷2=a2-b2,所以答案为:A.
解:A.
点评:利用割补图形和乘法公式来验证图形的面积,要求同学们有较强思维意识和对一些特殊图形面积公式的充分掌握.本题的关键是计算梯形面积.
例2如图2(1),阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即_____.
若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式:_____.
如图2(2),大正方形的面积可以表示为____,也可以表示为S=SⅠ+SⅡ+SⅢ+SⅣ,同时S=____,.从而验证了完全平方公式:_____.
分析:本题考查利用图形解释平方差和完全平方公式,体现数形几何思想。
如图2(1),阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;
若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式:(a+b)(a-b)=a2-b2.
如图2(2),大正方形的面积可以表示为(a+b)2,也可以表示为S=SⅠ+SⅡ+SⅢ+SⅣ,同时S=a2+ab+ab+b2=a2+2ab+b2.从而验证了完全平方公式:(a+b)2=a2+2ab+b2.
点评:本题通过简单的几何拼图验证了平方差公式,渗透了数形结合的数学思想,考查了学生的观察能力、分析研究能力及运算能力、
小学的乘法教案 篇5
设计说明
学生是学习的主体,教学中应关注学生学习的兴趣,鼓励学生独立思考、自主探索与合作交流。基于这样的观点,本节课的设计充分发挥学生的主体性,体现出学生的个性和创新,力求激发学生的学习兴趣,培养其创新意识,使其感受成功的愉悦。具体设计了以下三个环节。
1.情境引入,参与活动,激发学习兴趣。
首先利用教材提供的主题图激发学生的学习兴趣,将本节课很自然地引入到乘法知识中来。在观察主题图的过程中,让学生自主提出问题,并根据提出的问题来分析问题,找出解决问题的办法,但不要求学生列出算式。通过一系列情境的观察,为学生创设一种轻松愉快的学习氛围,让学生在玩中发现数学问题,激发学生想要进一步解决问题的.欲望。
2.发现问题,合作探索,解决问题。
这是本节课的中心环节。学生首先根据情境图提出不同的问题,分别用以前学过的方法来解决,列出一些加法算式。通过观察加法算式,使学生体会到这些相同加数的加法算式可以用“几个几”的形式表示出来,使学生能概括地认识到相同数相加问题的特征。然后巧妙地提出“这种加数相同的加法,还可以用乘法表示”,从而沟通相同数相加与乘法的关系。最后在列出乘法算式,认识乘号,学习乘法算式写法和读法的基础上进行乘法与加法的对比,感受乘法的意义。
3.应用新知,自主练习,解决生活中的问题。
这是本节课的练习环节。在这一环节要充分调动学生的日常生活经验,依照情境图提出一些常见的问题。让学生在这些问题中自主选择,并用今天学习的乘法知识解决问题。让学生感受到数学与日常生活的联系,同时“双基”也得到了很好的落实。
课前准备
教师准备PPT课件学情检测卡
教学过程
⊙激趣引入
星期天到了,小明和小朋友们都到游乐园来玩了!我们一起来看看吧,他们都玩了什么?(课件出示教材46页主题图)
1.引导学生观察主题图,教师提问:通过观察你都知道了什么?
2.提出问题:根据主题图中的信息,你能提出哪些数学问题?你准备怎样解答?
设计意图:通过主题图中的情境,激发学生的学习兴趣,引导学生提出数学问题,为下面的教学做好铺垫。
⊙认识乘法,建立概念
1.选取学生提出的有价值的数学问题。(课件出示)
(1)有5架小飞机,每架小飞机里坐3人。小飞机里共有多少人?
(2)有4节小火车车厢,每节车厢里有6人。小火车里共有多少人?
(3)过山车上有7排座位,每排坐2人。过山车里共有多少人?
2.学生根据课件出示的问题,自主解答。
(1)分组讨论,列出算式。
①3+3+3+3+3=15
②6+6+6+6=24
③2+2+2+2+2+2+2=14
(2)请学生观察算式,找出共同特点。
预设
生1:每个算式都是相同的数相加。
生2:每个算式中所有的加数都相同。
(3)教师明确:第一个算式里一共有5个3,那么第二、第三个算式可以怎样说呢?
预设
生1:第二个算式里一共有4个6。
生2:第三个算式里一共有7个2。
(4)师小结。
同学们回答得很正确,相同数相加的算式里有几个加数,就可以用“几个几”的形式表示出来。其实这样的算式还有更简单的表示方法,这就是我们今天要学习的内容。(板书课题:认识乘法)
设计意图:让学生观察加法算式,找出共同特点,使其能够用“几个几”的形式表示出来,为下一步用乘法算式表示相同数相加打好基础。