返回首页
智远网 > 短文 > 教案 > 正文

《实际问题与方程》教学设计

2025/09/27教案

此篇文章《实际问题与方程》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《实际问题与方程》教学设计 篇1

一、活动内容:

课本第110页111页活动1和活动3

二、活动目标:

1、知识与技能:

运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:

(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

3、情感态度与价值观:

通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、重难点与关键

1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

2、难点:以上重点也是难点

3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。

四、教具准备:

投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

五、教学过程:

(一)、活动1

一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

这个人买了n件商品需要多少元?

教师活动:

(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

(2)教师对学生在发表解法时存在的.问题加以指正。学生活动:

(1)分组后对活动一的问题展开讨论,探究解决问题的方法。

(2)学生派代表上黑板板演,并发表解法。

解:2.2n n100

2.2100+2(n-100) n100

问题转换:

一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

(1)这个人买这种商品多少件?

(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

教师活动:同上学生活动:同上

解:(1) n220

100+ n220

(2) =0.48n n=0

100+ =0.48n n=500

(二)、活动2:

本活动课前布置学生做好活动前的准备工作:

1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

2、分组:(4人一组)

开始做下面的实验:

(1)把直尺的中点放在支点上,使直尺左右平衡。

(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)

(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

以上实验过程可以由学生填写在预先设计的记录表上

实验次数棋子数ab值a与b的关系

右左a b

第1次1 1

第2次1 2

第3次1 3

第4次1 4

第n次1 n

根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差。

根据实验得出a、b之间关系,猜想当第n次实验的a和b的关系如何?a=nb(学生实验得出学生代表发言)

如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)

此问题由学生合作解决并派代表板演并讲解,教师加以指正。

解:设支点离n枚棋子的距离为x得:

x+nx=L x=答:略

(三)、小结,由学生谈本节课的收获。

(四)、作业

1、课后了解实际生活中的类似活动问题,并举出几个例子。

2、课本,第110页活动2。

《实际问题与方程》教学设计 篇2

【教学内容】

教材第73页例1、“做一做”和练习十六的第2~4题。

【教学目标】

1、使学生掌握列方程解决实际问题的基本方法和步骤。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程并解答。

3、培养学生从问题出发去寻找所需条件的分析能力。

【重点难点】

1、根据等量关系正确地列出方程并解答。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程。

【教学准备】

多媒体课件。

【复习导入】

1、用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与3、5的和是7、3:

(2)从30里减去x的1、5倍,差是18:

(3)一个数的6倍减去35,差是13:

学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。

2、解方程。

x+5、7=10 3x-6=18 2(x+2、5)=5

三名学生板演,并交流解答过程。

3、导入新课:出示学校运动会跳远比赛的情景图片,大家能提出什么有价值的问题呢?

学生自由讨论后汇报交流。

那么这节课我们一起来学习利用方程解决实际问题。

出示课题,引入新课并板书。

【新课讲授】

1、教学例1。

(1)出示例1情景图。

这是一次学校运动会的情景,小明进行跳远比赛的场景,大家看:小明的跳远成绩是4、21m,超过学校的原纪录0、06m,学校原跳远纪录是多少米?

(2)找等量关系。

课件演示小明的跳远成绩、学校原跳远纪录及其关系。

提问:你能根据演示说明,说出小明的跳远成绩、学校原跳远纪录和超出成绩的关系吗?

根据学生回答,板书:

A、小明跳远的成绩-超过的成绩=学校原跳远纪录

B、学校原跳远纪录+超过的成绩=小明跳远的成绩

C、小明跳远的成绩-学校原跳远纪录=超过的成绩

(3)探究方法。

提问:你能试着用自己想到的方法解答吗?

学生汇报算术方法:4、21-0、06=4、15(m)

师:谁还能用其他的方法来解答这道题?如果设学校原跳远纪录为x米,那么根据上面分析得出的等量关系,怎样列方程?

学生尝试解答,并请学生汇报自己的解答过程。

教师板书:

解:设学校原跳远纪录为x米,

由学校原跳远纪录+超过的成绩=小明跳远的成绩

x+0、06=4、21

x+0、06-0、06=4、21-0、06

x=4、15

学生解答后,验证解答方法是否正确。

教师小结:根据不同的等量关系,可以列出不同的方程,一般来说,同一等量关系,用加法比用减法表示更容易思考。

(4)师生共同小结:用方程解决实际问题的步骤。

师:用方程解决实际问题需要注意什么?

小组交流并汇报,教师引导学生总结出用方程解决实际问题的方法、策略、步骤。

①审清题意,找出未知数,用x表示;

②找出等量关系,并列出方程;

③解方程;

④验算。

2、典例讲析。

例:修一条长240km的高速铁路,还剩42km没有修,已经修了多少千米?

分析:此题要求修一条长240km的高速铁路,现在还剩42km没有修,求已经修了多少千米,它们之间的关系为已修+剩下的=总长。我们可以设已经修的为x千米,再依关系式列方程。

解:设已经修了x千米。

x+42=240

x=198

检验:把x=198代入原方程,方程左边=198+42=240=方程右边

所以x=198是原方程的解。

答:已经修了198km。

【课堂作业】

完成课本第73页“做一做”。

让学生先说出题目的'等量关系,再列方程解答。

分析:(1)要求去年的身高是多少,已知今年的身高是1、53m,比去年长高了200px,它们之间的关系是去年的身高+长高的=今年的身高。

(2)每分钟的滴水量、半小时(即30分钟)及半小时滴水量1、8kg之间的等量关系表示为:每分钟滴水量×30=半小时滴水量。

答案:(1)解:设小明去年身高xm。

200px=0、08m

x+0、08=1、53

x+0、08-0、08=1、53-0、08

x=1、46

经检验x=1、46是原方程的解。

答:小明去年身高是1、46米。

(2)解:设水龙头每分钟浪费水x克。

1、8kg=1800g

30x=1800

30x÷30=1800÷30

x=60

提问:应该怎样验算?

学生口述验算过程。

答:水龙头每分钟浪费水60克。

【课堂小结】

提问:同学们,通过这节课的学习,你知道列方程解决实际问题的解题步骤了吗?还有什么疑惑?

小结:用方程解决实际问题的步骤:

①审清题意,找出已知与未知数,未知数用x表示;

②找出题中的等量关系,并列出方程;

③解方程;

④检验并写出答案。

【课后作业】

1、完成教材第75页练习十六第2~4题。

《实际问题与方程》教学设计 篇3

【教学背景】:

本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。

【教学目标】:

(一)知识与技能:

1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;

2、熟练掌握追及问题中的等量关系。

(二)过程与方法

培养学生观察能力,提高他们分析问题和解决实际问题的能力。

(三)情感态度价值观:

培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。

【教学重难点】:

1、重点:找等量关系列一元一次方程,解决追及问题。

2、难点:将实际问题转化为数学模型,并找出等量关系。

【教学方法】:

探究式

【教学过程】:

一、创设问题情景,引入新课:

1、行程问题中有哪些基本量?它们间有什么关系?

2、行程问题有哪些基本类型?

二、知识应用,拓展创新:

行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。

三、例题讲解

例1(同时不同地)甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。两人同时出发,同向而行,几秒后乙能追上甲?

分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。所以有等量关系:乙走的路程—甲走的路程=100

解:设x秒后乙能追上甲

根据题意得5x—3x=100

解得x=50

答:50秒后乙能追上甲。

小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

中的同时不同地问题,以后遇到此类题,该如何解决。

例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。如果让黄色马先跑1s,棕色马再开始跑,几秒后可以追上黄色马?

分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。

解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。

小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

中的同地不同时问题。

归纳小结:列方程解应用题的一般步骤:

审—通过审题明确已知量、未知量,找出等量关系;

设—设出合理的未知数(直接或间接);

列—依据找到的等量关系,列出方程;

解—求出方程的解;

验—检验求出的'值是否为方程的解,并检验是否符合实际问题;

答—注意单位名称。

练一练:(环形跑道问题)甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。两人同时同地同向跑,几秒后两人第一次相遇?

分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程—乙走的路程=400

解答由学生完成。

本节知识归纳:

1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;

2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。

3 、用示意图辅助分析数量间的关系便于我们列方程。

四、作业布置:(见补充题)

【课后反思】:

通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。

《实际问题与方程》教学设计 篇4

【教学内容】

教材第73页例1、“做一做”和练习十六的第2~4题。

【教学目标】

1、使学生掌握列方程解决实际问题的基本方法和步骤。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程并解答。

3、培养学生从问题出发去寻找所需条件的分析能力。

【重点难点】

1、根据等量关系正确地列出方程并解答。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程。

【教学准备】

多媒体课件。

【复习导入】

1、用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与3、5的和是7、3:

(2)从30里减去x的1、5倍,差是18:

(3)一个数的6倍减去35,差是13:

学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。

2、解方程。

x+5、7=10 3x-6=18 2(x+2、5)=5

三名学生板演,并交流解答过程。

3、导入新课:出示学校运动会跳远比赛的情景图片,大家能提出什么有价值的问题呢?

学生自由讨论后汇报交流。

那么这节课我们一起来学习利用方程解决实际问题。

出示课题,引入新课并板书。

【新课讲授】

1、教学例1。

(1)出示例1情景图。

这是一次学校运动会的情景,小明进行跳远比赛的场景,大家看:小明的跳远成绩是4、21m,超过学校的原纪录0、06m,学校原跳远纪录是多少米?

(2)找等量关系。

课件演示小明的跳远成绩、学校原跳远纪录及其关系。

提问:你能根据演示说明,说出小明的跳远成绩、学校原跳远纪录和超出成绩的.关系吗?

根据学生回答,板书:

A、小明跳远的成绩-超过的成绩=学校原跳远纪录

B、学校原跳远纪录+超过的成绩=小明跳远的成绩

C、小明跳远的成绩-学校原跳远纪录=超过的成绩

(3)探究方法。

提问:你能试着用自己想到的方法解答吗?

学生汇报算术方法:4、21-0、06=4、15(m)

师:谁还能用其他的方法来解答这道题?如果设学校原跳远纪录为x米,那么根据上面分析得出的等量关系,怎样列方程?

学生尝试解答,并请学生汇报自己的解答过程。

教师板书:

解:设学校原跳远纪录为x米,

由学校原跳远纪录+超过的成绩=小明跳远的成绩

x+0、06=4、21

x+0、06-0、06=4、21-0、06

x=4、15

学生解答后,验证解答方法是否正确。

教师小结:根据不同的等量关系,可以列出不同的方程,一般来说,同一等量关系,用加法比用减法表示更容易思考。

(4)师生共同小结:用方程解决实际问题的步骤。

师:用方程解决实际问题需要注意什么?

小组交流并汇报,教师引导学生总结出用方程解决实际问题的方法、策略、步骤。

①审清题意,找出未知数,用x表示;

②找出等量关系,并列出方程;

③解方程;

④验算。

2、典例讲析。

例:修一条长240km的高速铁路,还剩42km没有修,已经修了多少千米?

分析:此题要求修一条长240km的高速铁路,现在还剩42km没有修,求已经修了多少千米,它们之间的关系为已修+剩下的=总长。我们可以设已经修的为x千米,再依关系式列方程。

解:设已经修了x千米。

x+42=240

x=198

检验:把x=198代入原方程,方程左边=198+42=240=方程右边

所以x=198是原方程的解。

答:已经修了198km。

【课堂作业】

完成课本第73页“做一做”。

让学生先说出题目的等量关系,再列方程解答。

分析:(1)要求去年的身高是多少,已知今年的身高是1、53m,比去年长高了200px,它们之间的关系是去年的身高+长高的=今年的身高。

(2)每分钟的滴水量、半小时(即30分钟)及半小时滴水量1、8kg之间的等量关系表示为:每分钟滴水量×30=半小时滴水量。

答案:(1)解:设小明去年身高xm。

200px=0、08m

x+0、08=1、53

x+0、08-0、08=1、53-0、08

x=1、46

经检验x=1、46是原方程的解。

答:小明去年身高是1、46米。

(2)解:设水龙头每分钟浪费水x克。

1、8kg=1800g

30x=1800

30x÷30=1800÷30

x=60

提问:应该怎样验算?

学生口述验算过程。

答:水龙头每分钟浪费水60克。

【课堂小结】

提问:同学们,通过这节课的学习,你知道列方程解决实际问题的解题步骤了吗?还有什么疑惑?

小结:用方程解决实际问题的步骤:

①审清题意,找出已知与未知数,未知数用x表示;

②找出题中的等量关系,并列出方程;

③解方程;

④检验并写出答案。

【课后作业】

1、完成教材第75页练习十六第2~4题。

《实际问题与方程》教学设计 篇5

由"倍数关系"等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

教学目标

掌握用"倍数关系"建立数学模型,并利用它解决一些具体问题.

通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用"倍数关系"建立数学模型,并利用它解决实际问题.

重难点关键

1.重点:用"倍数关系"建立数学模型

2.难点与关键:用"倍数关系"建立数学模型

教学过程

一、复习引入

(学生活动)问题1:列方程解应用题

下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):

星期 一 二 三 四 五

甲 12元 12.5元 12.9元 12.45元 12.75元

乙 13.5元 13.3元 13.9元 13.4元 13.75元

某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?

老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

解:设这人持有的甲、乙股票各x、y张.

则 解得

答:(略)

二、探索新知

上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?

老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样"倍数"增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31

去括号:1+1+x+1+2x+x2=3.31

整理,得:x2+3x-0.31=0

解得:x=10%

答:(略)

以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.

例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.

分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.

解:设平均增长率为x

则200+200(1+x)+200(1+x)2=950

整理,得:x2+3x-1.75=0

解得:x=50%

答:所求的增长率为50%.

三、巩固练习

(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?

(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.

四、应用拓展

例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就变为1000+20xxx·80%,其它依此类推.

解:设这种存款方式的年利率为x

则:1000+20xxx·80%+(1000+20xxx·8%)x·80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2= =0.125=12.5%

答:所求的年利率是12.5%.

五、归纳小结

本节课应掌握:

利用"倍数关系"建立关于一元二次方程的数学模型,并利用恰当方法解它.

六、布置作业

1.教材P53 复习巩固1 综合运用1.

2.选用作业设计.

作业设计

一、选择题

1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ).

A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250

C.100(1-x)2=250 D.100(1+x)2

2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ).

A.(1+25%)(1+70%)a元 B.70%(1+25%)a元

C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元

3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).

A. B.p C. D.

二、填空题

1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的'产量为_______,三年总产量为_______.

2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.

3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,20xx年降价70%至a元,则这种药品在1999年涨价前价格是__________.

三、综合提高题

1.为了响应国家"退耕还林",改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.

3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.

(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率= ×100%)

(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

答案:

一、1.B 2.B 3.D

二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2

2.a(1+x)2t

3.

三、1.平均增长率为x,则1600(1+x)2=1936,x=10%

2.设乙型增长率为x,甲型一月份产量为y:

即16x2+56x-15=0,解得x= =25%,y=20(台)

3.(1)第一年年终总资金=50(1+P)

(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。

《实际问题与方程》教学设计 篇6

由"倍数关系"等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

教学目标

掌握用"倍数关系"建立数学模型,并利用它解决一些具体问题.

通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用"倍数关系"建立数学模型,并利用它解决实际问题.

重难点关键

1.重点:用"倍数关系"建立数学模型

2.难点与关键:用"倍数关系"建立数学模型

教学过程

一、复习引入

(学生活动)问题1:列方程解应用题

下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):

星期 一 二 三 四 五

甲 12元 12.5元 12.9元 12.45元 12.75元

乙 13.5元 13.3元 13.9元 13.4元 13.75元

某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?

老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

解:设这人持有的甲、乙股票各x、y张.

则 解得

答:(略)

二、探索新知

上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?

老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样"倍数"增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31

去括号:1+1+x+1+2x+x2=3.31

整理,得:x2+3x-0.31=0

解得:x=10%

答:(略)

以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的.,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.

例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.

分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.

解:设平均增长率为x

则200+200(1+x)+200(1+x)2=950

整理,得:x2+3x-1.75=0

解得:x=50%

答:所求的增长率为50%.

三、巩固练习

(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?

(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.

四、应用拓展

例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就变为1000+20xxx·80%,其它依此类推.

解:设这种存款方式的年利率为x

则:1000+20xxx·80%+(1000+20xxx·8%)x·80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2= =0.125=12.5%

答:所求的年利率是12.5%.

五、归纳小结

本节课应掌握:

利用"倍数关系"建立关于一元二次方程的数学模型,并利用恰当方法解它.

六、布置作业

1.教材P53 复习巩固1 综合运用1.

2.选用作业设计.

作业设计

一、选择题

1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ).

A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250

C.100(1-x)2=250 D.100(1+x)2

2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ).

A.(1+25%)(1+70%)a元 B.70%(1+25%)a元

C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元

3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).

A. B.p C. D.

二、填空题

1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.

2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.

3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,20xx年降价70%至a元,则这种药品在1999年涨价前价格是__________.

三、综合提高题

1.为了响应国家"退耕还林",改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.

3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.

(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率= ×100%)

(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

答案:

一、1.B 2.B 3.D

二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2

2.a(1+x)2t

3.

三、1.平均增长率为x,则1600(1+x)2=1936,x=10%

2.设乙型增长率为x,甲型一月份产量为y:

即16x2+56x-15=0,解得x= =25%,y=20(台)

3.(1)第一年年终总资金=50(1+P)

(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。