《烙饼问题》教学反思
此篇文章《烙饼问题》教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。
《烙饼问题》教学反思 篇1
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。关于这方面的教学建议,《数学课程标准》指出:让学生借助学具操作,经历探索数学知识的过程,逐步掌握最佳方法,通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在解决实际问题中的应用价值,来感受数学的魅力。
在课堂教学中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕大问题“怎样烙饼才能尽快吃上饼?”展开教学,循序渐进设计了烙2张、3张、多张饼的探究过程。为什么不提烙1张饼的过程,我是从两个方面去思考的:一是从解决问题的角度出发,给定信息中明确了每次可以烙2张饼,没有必要浪费;二是在建构数学模型的过程中不便于建立“饼数×3=最少时间”的数学模型;还有就是在烙3张饼时就会碰到烙1张饼的情况,这也会成为学生学习中的一个强大认知冲突,我就以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生小组合作中重点讨论烙3张饼的思维过程,学生将烙饼的方法记录在作业纸上,代替烙饼的纸都编了号、并且注明了饼的正面、反面,汇报时学生讲述起来非常清晰完整。通过合作、学生动手操作想一想,说一说,摆一摆的过程让学生真正动眼、动手、动脑参与获取知识的过程。学生们做到了在操作中感知,在实践中升华,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
在发现数学规律、建构数学模型的过程中,我让学生仔细观察表格、小组讨论交流,说一说自己的发现。(根据情况决定是否给学生启示:1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的`基础上,得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。(我们把自己探讨的烙3张饼的方法称为快速烙饼法)得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
本节课的成功处在于,相信学生,把学生推上学习的主体地位。课堂上以一个个具体事例让学生观察、操作、讨论和交流等活动,使学生在解决具体问题中体会数学的方法及应用价值,学会优化思想,从课堂教学中多次为学生提供从事数学活动的机会。在这些活动中,教师以组织者、引导者、合作者的角色把学生推上主体地位,把学生思维引向深刻、细致,让他们感受到数学的严谨性和结论的确定性。
在课堂上,问题由学生来提,答案由学生来找,整个课堂是学生在探究、在发现、在解读,教师把自己巧妙地“隐藏”了起来。但这种“隐藏”并不意味着教师退出课堂活动,相反,教师要更好地扮演组织者和引导者的角色,将更多的精力用在创造性地设计教学环节、唤醒学生的学习热情、点燃学生的思维火花等方面上。
《烙饼问题》教学反思 篇2
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕怎样烙饼,才能尽快吃上饼?展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程,整节课根据不同的教学环节我渗透了以下理念:
1、解放学生的手,让学生操作实践
“生本教育”理念强调以学生为本,充分发挥学生学习的自主性。课前我让学生进行了自主小研究,要求让学生以圆形纸片替代饼,自己先进行烙饼活动,自主探究1张饼,2张饼,3张饼的最少烙饼时间。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
2、解放学生的口,让学生畅所欲言。
课堂上,我让学生以小组为单位,进行交流、展示、再全班交流,特别是3张饼怎么烙这个重难点,让学生说,让学生议,充分以生为本,师只在关键处引导,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。水尝水华相荡乃成涟漪;石本无火,相击而发灵光”。通过相互交流取长补短,不断完善自己的'认知体系,形成条理化,规律化的知识结构。
3、让学生体会数学思想方法
“烙饼问题”,它所呈现的是优化问题,优化问题是人们经常要遇到的问题,例如,我们出门旅行就要考虑选择怎样的路线和交通工具,才能使旅行所需费用最少或者所花的时间最短;所以课堂上一定要让学生体会到这种数学思想方法。这节课中我认为学生体会的还不错。
本节中也存在很多不足,“生本理念”体现的还不够,教师放手的力度不大,特别是让学生找烙饼规律时,师讲的还是太多,此外本节中练习的也不多。
《烙饼问题》教学反思 篇3
“数学广角”的知识成了这段时间的教学重点。四年级上册的“数学广角”包括了:烙饼问题、合理安排时间(统筹方法)、排队求等候时间总和、田忌赛马(对策论)这四个内容。看看课时安排,只有四课时,书上的内容,也好像很浅显。可是实际教学当中,要把各种方法在课堂中落实下去,知道过程,掌握方法,灵活运用,这其中的容量是很大的。下面就“烙饼问题”谈谈自己的想法:
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题向学生渗透简单的优化思想,让学生从中体会统筹思想在日常生活中的作用,感受数学的魅力。本节课我立足于培养学生良好的思维能力,从学生的生活经验和原有的基础知识出发,创设生活情境,以“烙饼”为主题,让学生借助学具操作,围绕怎样烙饼,亲身经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法。在本课教学中,我突出了以下几点:
1、让学生通过实践操作来理解方法。
教学时我先通过一个设疑“家里的锅每次只能烙两张饼,两面都要烙,烙熟一张饼的一面需要3分钟,怎样才能让一家三口尽快吃上饼?”来激发学生的兴趣。通过理解题意,有学生说出了9分钟这个答案,这时部分学生说不行的,但是也有部分学生说可以的。我就顺势让学生拿出课前准备的圆形纸片代替饼,让学生先独立操作演示。然后让他们同桌演示,有困难的互相讲解帮助。这样,几乎全部学生都理解了这个优化过程。这一环节,紧密联系学生的生活实际,从学生的生活经验和原有的知识出发,创设了生动、现实的`情境让学生在兴趣盎然的活动中感受到烙饼的策略。
2、渗透数学方法的同时,顺势进行理性地提升。
在教学怎样烙饼省时时,学生通过操作后掌握了三个饼的烙法,但是光有这些感性的认识是不够的,怎样让学生有进一步的理解和提升呢?我让学生来说说怎样表示刚才的操作方法,有的学生用写过程的方法,这时我就给学生提示了列表的方法:
饼的张数123
第一次正正
第二次反正
第三次反反
学生通过列表来表达过程,对烙饼的策略有了进一步理性的提升。在进一步寻找规律时,也不再是简单的操作,而要求学生操作后通过想像和思考来得出烙4张饼、5张饼、6张饼、7张饼……的策略
3、让学生通过多角度观察总结规律。
在学生得出烙2张饼、3张饼、4张饼……所需的时间后,下一步我让学生仔细观察表格,谈谈发现的规律并加以总结。学生的思维是活跃的,我鼓励学生从多个角度思考问题,引导学生分析并总结出了以下几种规律:①如果要烙的饼的张数是双数,可以两张两张地烙;如果要烙的张数是单数,就先两张两张地烙,剩下的就用烙三张饼的最佳方法来烙。②每多烙一张,就多用3分钟。③烙饼的张数和时间的规律:用饼数乘3就可以知道烙饼的时间。
爱因斯坦说“比宇宙更辽阔的是什么?是想象力。”在数学教学中我们应该鼓励学生敢于向老师、向书本、向权威质疑挑战,敢于标新立异。本节课结束时有学生提出:“如果一次能烙3张饼、4张饼或更多的饼,需要多长时间呢?”我相信,让学生经历了一次烙两张饼,烙3张饼的最佳方法的过程,学生是有能力推导出一次烙3张或4张饼的最少时间的。
《烙饼问题》教学反思 篇4
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。关于这方面的教学建议,《数学课程标准》指出:让学生借助学具操作,经历探索数学知识的过程,逐步掌握最佳方法,通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在解决实际问题中的应用价值,来感受数学的魅力。
在课堂教学中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕大问题“怎样烙饼才能尽快吃上饼?”展开教学,循序渐进设计了烙2张、3张、多张饼的探究过程。为什么不提烙1张饼的过程,我是从两个方面去思考的:一是从解决问题的角度出发,给定信息中明确了每次可以烙2张饼,没有必要浪费;二是在建构数学模型的过程中不便于建立“饼数×3=最少时间”的数学模型;还有就是在烙3张饼时就会碰到烙1张饼的情况,这也会成为学生学习中的一个强大认知冲突,我就以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生小组合作中重点讨论烙3张饼的思维过程,学生将烙饼的方法记录在作业纸上,代替烙饼的纸都编了号、并且注明了饼的正面、反面,汇报时学生讲述起来非常清晰完整。通过合作、学生动手操作想一想,说一说,摆一摆的过程让学生真正动眼、动手、动脑参与获取知识的过程。学生们做到了在操作中感知,在实践中升华,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
在发现数学规律、建构数学模型的过程中,我让学生仔细观察表格、小组讨论交流,说一说自己的发现。(根据情况决定是否给学生启示:1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?2、仔细观察烙饼的张数不同烙饼的.方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。(我们把自己探讨的烙3张饼的方法称为快速烙饼法)得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
本节课的成功处在于,相信学生,把学生推上学习的主体地位。课堂上以一个个具体事例让学生观察、操作、讨论和交流等活动,使学生在解决具体问题中体会数学的方法及应用价值,学会优化思想,从课堂教学中多次为学生提供从事数学活动的机会。在这些活动中,教师以组织者、引导者、合作者的角色把学生推上主体地位,把学生思维引向深刻、细致,让他们感受到数学的严谨性和结论的确定性。
在课堂上,问题由学生来提,答案由学生来找,整个课堂是学生在探究、在发现、在解读,教师把自己巧妙地“隐藏”了起来。但这种“隐藏”并不意味着教师退出课堂活动,相反,教师要更好地扮演组织者和引导者的角色,将更多的精力用在创造性地设计教学环节、唤醒学生的学习热情、点燃学生的思维火花等方面上。
《烙饼问题》教学反思 篇5
在教学过程中,我以“烙饼”为主题,围绕“怎样烙饼,才能尽快吃上饼?”并利用多媒体课件,展开教学,设计了烙1张、2张、3张----多张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律的过程。为了更好地突破难点,突出重点,我采用了下面的方法:
1、设计可操作学具。考虑到学生是第一次接触统筹问题,为了帮助学生在探索中体验,在体验中发现,课前我针对例题设计制作了相关的学具,用圆片代表饼,这样便于学生借助学具的操作,在直观中调整,在操作中发现,能更加自然地感悟简单的`优化思想。
2、动手操作,理解方法。动手实践可以让学生获取大量的表象经验,使抽象的数学知识形象化,加深对知识的理解。抓住了烙3个饼最少要用多少分钟这个难点,让学生通过操作,说理,再操作来加深印象,体会最少用9分钟的道理。在研究3张饼的烙法时,先让学生进行猜想、然后动手操作并给同桌展示说明,学生经历了在操作中思考,在思考中操作的过程,通过同桌合作,形成了自己烙3张饼的方法,接着,由学生展示不同的烙法,并从中选择出烙3张饼的最佳方法,这样,学生解决了烙饼需要最短时间中的基本问题。在最后又安排了“如果要烙的是4张饼,5张饼……10张饼呢?你发现了什么”。让学生完成表格。发现“饼数×3=最快时间”;如果要烙的饼的张数是双数,就两张两张的烙就可以了,如果要烙的饼的张数是单数,就先两张两张的烙,最后3张饼用轮流烙饼法烙,这样做最节省时间”这些规律。
但是在教学中,我也存在着不足,一节课下来,也有几点值得深思,反思自身,在很多方面还需努力啊,主要罗列几点,提示自己:
1、放手的力度不够,特别是让学生找烙饼规律时,我讲的还是太多,此外本节中练习的不多,还需要搜集练习。
2、在课堂上要多用激励性语言来鼓舞学生,语言还应再简练些。
3.课堂情绪调控有待加强,受学生的状态影响较大,不能很好的自我调节。
4.我对于课堂上学生的生成性问题,处理的不到位。如:有一名学生自豪的说:“老师我可以6分钟完成,就是把第三张饼分成两半放到锅的两边一起烙就行了。”等像这类的问题处理的不到位。
《烙饼问题》教学反思 篇6
“数学广角”的知识成了这段时间的教学重点。四年级上册的“数学广角”包括了:烙饼问题、合理安排时间(统筹方法)、排队求等候时间总和、田忌赛马(对策论)这四个内容。看看课时安排,只有四课时,书上的内容,也好像很浅显。可是实际教学当中,要把各种方法在课堂中落实下去,知道过程,掌握方法,灵活运用,这其中的容量是很大的。下面就“烙饼问题”谈谈自己的想法:
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题向学生渗透简单的优化思想,让学生从中体会统筹思想在日常生活中的作用,感受数学的魅力。本节课我立足于培养学生良好的思维能力,从学生的生活经验和原有的基础知识出发,创设生活情境,以“烙饼”为主题,让学生借助学具操作,围绕怎样烙饼,亲身经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的'最佳方法。在本课教学中,我突出了以下几点:
1、让学生通过实践操作来理解方法。
教学时我先通过一个设疑“家里的锅每次只能烙两张饼,两面都要烙,烙熟一张饼的一面需要3分钟,怎样才能让一家三口尽快吃上饼?”来激发学生的兴趣。通过理解题意,有学生说出了9分钟这个答案,这时部分学生说不行的,但是也有部分学生说可以的。我就顺势让学生拿出课前准备的圆形纸片代替饼,让学生先独立操作演示。然后让他们同桌演示,有困难的互相讲解帮助。这样,几乎全部学生都理解了这个优化过程。这一环节,紧密联系学生的生活实际,从学生的生活经验和原有的知识出发,创设了生动、现实的情境让学生在兴趣盎然的活动中感受到烙饼的策略。
2、渗透数学方法的同时,顺势进行理性地提升。
在教学怎样烙饼省时时,学生通过操作后掌握了三个饼的烙法,但是光有这些感性的认识是不够的,怎样让学生有进一步的理解和提升呢?我让学生来说说怎样表示刚才的操作方法,有的学生用写过程的方法,这时我就给学生提示了列表的方法:
饼的张数123
第一次正正
第二次反正
第三次反反
学生通过列表来表达过程,对烙饼的策略有了进一步理性的提升。在进一步寻找规律时,也不再是简单的操作,而要求学生操作后通过想像和思考来得出烙4张饼、5张饼、6张饼、7张饼……的策略
3、让学生通过多角度观察总结规律。
在学生得出烙2张饼、3张饼、4张饼……所需的时间后,下一步我让学生仔细观察表格,谈谈发现的规律并加以总结。学生的思维是活跃的,我鼓励学生从多个角度思考问题,引导学生分析并总结出了以下几种规律:①如果要烙的饼的张数是双数,可以两张两张地烙;如果要烙的张数是单数,就先两张两张地烙,剩下的就用烙三张饼的最佳方法来烙。②每多烙一张,就多用3分钟。③烙饼的张数和时间的规律:用饼数乘3就可以知道烙饼的时间。
爱因斯坦说“比宇宙更辽阔的是什么?是想象力。”在数学教学中我们应该鼓励学生敢于向老师、向书本、向权威质疑挑战,敢于标新立异。本节课结束时有学生提出:“如果一次能烙3张饼、4张饼或更多的饼,需要多长时间呢?”我相信,让学生经历了一次烙两张饼,烙3张饼的最佳方法的过程,学生是有能力推导出一次烙3张或4张饼的最少时间的。