返回首页
智远网 > 短文 > 教案 > 正文

《圆的认识》教学设计

2025/10/16教案

此篇文章《圆的认识》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《圆的认识》教学设计 篇1

教材分析:

圆的认识是在学生认识了长方形、正方形、平行四边形、三角形,梯形等平面图形和初步认识圆的基础上进行学习的。这是研究曲线图性的开始。是学生认识发展的一次飞跃。我们应注重从学生的已有经验和知识背景出发,结合具体情景和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会圆的本质特征:到定点的距离等于定长的点的集合。

教学重点:

探索出圆各部分的名称、特征及关系。

教学难点:

通过动手操作体会圆的特征。

教学片断:

套圈游戏 :

(1)六个同学站成一条线。

师问:公平吗?

生:不公平,他们到红旗的距离不一样。(师引导学生用数学语言“距离不相等”)

(2)八个学生站成一个正方形

师问:这次公平吗?

生:还是不公平,站在角上的远。

(3)八个同学站成一个圆

师:这次呢?

生:公平。因为他们到红旗的距离都相等。(到定点的距离等于定长)

(4)八个同学围成圈之后不动,再去八个同学插到里面。(多八个人还是这个圆)再去八个(拥挤,但还是这个圆。)

引导学生感受集合的概念。

让学生拿出事先准备好的圆形物体,让学生先对折,再换不同的方向对折,对折几次后,把交点画出来。并告诉学生,每条折痕都是圆的直径。(引出直径的定义:通过圆心并且两端都在圆上的线段,叫做直径。)

让学生用直尺量出每条直径的长度。

师:在同一个圆里,直径会有怎样的特点? 三人小组讨论后,得出

生1:在同一个圆里,所有的直径长度都是一样的。生2:在同一个圆里,有无数条直径。

师:在同一个圆里,有无数条直径,所有的直径的长度都是相等的。

师:在同一个圆里,所有的半径又有怎样的'特点呢?(引出半径的定义:连接圆心和圆上任意一点的线段,叫做半径)

生经过自己动手量,得出的结论是:在同一个圆里,有无数条半径,所有的半径都是相等的。

师:在同一个圆里,直径与半径又有怎么样的关系? 生用直尺分别量出直径和半径的长度,得出的结论是: 在同一个圆里,直径是半径的2倍,半径是直径的一半。用字母表示:d=2r 或r= d 圆的画法

1、利用工具画圆 介绍圆规:前面我们用不同的方法画出了圆,但通常我们会借助一个专门的 工具来画圆。这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔。两只脚可随意叉开。

2、你能试着用圆规画出一个圆吗?边画边想,圆规画圆一般分哪几步?需要注意什么?

3、交流

(1)让学生说说自己画圆的过程,教师示范画圆。适时板书:两脚叉开、固定针尖、旋转画圆。

(2)小组交流画圆的情况,以及出现的问题,反思画圆应注意什么。同时出示书中的四幅插图。

(3)小结:画圆时要注意针尖必须固定一点,不可移动,两脚间的距离必须保持不变;要旋转一周。

4、让学生将两脚间的距离确定为4厘米,按照刚刚的步骤画一个圆,并在小组内比一比谁画得好?

5、学习圆心、半径和直径

介绍圆心、半径和直径的同时,在图中画出相应的线段,标出相应的字母。然后让学生在自己画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。

板书设计:

圆的认识

(一)直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。半径:连接圆心和圆上任意一点的距离叫做半径。半径一般用字母r表示。在同一个圆里,有无数条直径,所有的直径长度都相等。在同一个圆里,有无数条半径,所有的半径长度都相等。在同一个圆里,直径是半径的2倍,半径是直径的。用字母表示:d=2r 或r= d

教学反思:

《圆的认识一》这节课属于概念教学,我在设计本课时想到的是不仅仅要让学生知道圆各部分的名称、掌握圆的特征,更要让学生通过亲身感受去认识圆,我让他们不仅要动脑筋想,动口说,还要动手折、画,提高他们的自学能力和空间观念。

圆是一种常见的图形,在此之前学生就已经对圆有了初步的感性认识。这节课,我根据新课程所倡导的教育理念,利用课程资源,注意教师和学生互动交流,尊重学生已有的生活经验,让学生充分表达自己的意见,在活动中生成知识,使课堂气氛和谐、活跃。但是学生的思维和言语是无法预测的,在把圆对折时,预习过的同学直接把折痕说成了直径,我就马上肯定了他们的说法,问他们什么是直径,这样处理使教学的进行更顺畅,更容易与学生产生共鸣;在研究同一个圆里直径的长度和半径的长度之间的关系时,让学生小组讨论得出结论后,再通过演示让他们直观的感受到在同一个圆里两条半径的长度等于一条直径的长度,加深了他们的理解。

《圆的认识》教学设计 篇2

教学目的:

1、通过折一折、数一数、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。

3、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

4、渗透知识来源于实践、学习的目的在于应用的思想。

教学重、难点:

掌握圆各部分的名称及圆的特征。圆的画法的掌握。

教具准备:

多媒体课件、圆形纸片、圆规、直尺等。

学具准备:

直尺、圆规、圆形纸片等。

教学主要过程:

一、创设情景,激发学习兴趣。

师:孩子们,见过平静的水面吗?生:见过。

师:丢进一块石头,你发现有什么变化?生:荡起一个个波纹。

师:这些波纹是什么形状的呢?生:圆形的。

师:这样的现象在大自然中随处可见。生活中,你在哪些地方见到过这些图圆形呢?

生:……

师:对了,生活中的很多地方都能看到圆形,老师这里也收集了一些,请看!(课件播放)盛开的向日葵,被切开的橙子……)师:同学们,在上面你同样找到圆形了吗?生:找到了。

师:有人说,因为有了圆,我们的生活才变得多姿多彩。这节课就让我们一起走进圆的世界探寻其中的奥秘吧

二、圆与平面图形的区别。

师:老师的信封里也有一个圆,想看一看吗?生:想。

师:可是除了圆还有一些其他的平面图形,也想看一看吗?(老师一一拿出来,生说名称)师:(课件)好样的,如果要从这一些平面图形把它给摸出来,觉得有没有难度?生:没有。

师:怎么会没有难度呢?

生:其他的有棱角,直直的,而圆是圆圆的。摸起来很光滑。师:这些图形都是由什么围成的?(课件)生:线段围成的。

师:而圆的边事弯曲的,所以我们说圆是由一条曲线围成的图形。(课件)师:找到他们的区别后有没有信心把圆从里面摸出来?生:有。

师:可是事情还是没那么简单,里面除了圆还有其它曲线图形。(拿出)生:(惊讶)

师:同学们瞧。这个图形它也是由曲线围成的。同学们会不会把它当成圆形摸出来呢?

生:不会。这个曲线图形表面凹凸不平,而圆是很光滑的。

师:(拿出椭圆)还有呢。这个够光滑吧?你待会儿该不会把它当成圆形给掏出来吧?

生:不会,因为椭圆看起来扁扁的。而圆很匀称,怎么看都一样。师:说的好,椭圆这样看矮矮的、胖胖的。这样看呢?生:高高的瘦瘦的。

师:而圆看起来很匀称,怎么看都一样。

师:通过我们刚才的比较,谁能从这些平面图形中摸出圆?

师:好,你来吧。闭上眼睛,把手往前伸着,我把这些图形一个个放在你手中,你只需回答是圆不是圆就可以了。下面同学不能提示,根据他的回答作出判断。(动手感知)

师:真厉害,最热烈的掌声送给他。

师:刚才我们已经知道,圆是由一条曲线围成的封闭图形。(课件)围成圆的这一周,我们把它叫做圆上。在圆上的这一点A,我们就说A点在圆上。那外面的呢?我们把它叫做什么?生:圆外。

师:这里的一点B,外面就说B点在?(圆外)师:里面呢?叫什么?生:圆内。

三、合作探究认识圆心、半径和直径。这是圆与其他图形的区别,那么圆到底还有哪些特征呢?现在拿出准备的圆形纸片,我们来做个试验。把你的圆对折再对折,多折几次。打开。结合大屏上的三个提示小组内合作探究。看看圆到底还有哪些特征。(课件出示)

师:相信大家一定会有不少新的发现。(学生合作交流)

师:你们讨论完了吗?经过数次对折,你发现了什么?生:我发现纸上留下许多折痕。

生:我还发现这些折痕相交于圆中心一点。师:是这样的吗?一起来看。

师(课件):经过几次对折打开,纸上留下了这些折痕。你们发现了吗?(板书:长折痕)

师:(课件)这些折痕相交于圆中心一点,找到这一点了吗?用笔把它点出来。(板书:一点)

师:我们把相交于圆中心的这一点,叫做圆心,圆心用字母O表示(板书:圆心O)

师:把你们的也标上字母。

师:这些折痕,它们有什么共同的特点?生:都通过了圆心。

师:对了,还有呢?生:两端都在圆上。师:既然两端都在圆上,说明它是一条什么?生:线段

师:(课件)对了,我们就把通过圆心,并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。

师:通过刚才的观察,你还发现了什么?

生:我还发现圆心把这些长折痕平均分成了许多短折痕。

师:圆心将这些长折痕等分成了很多短折痕。是吗?(板书:短折痕)师:这些短折痕又有什么共同的特点呢?

生:我发现它们的一端都在圆心,另一端都在圆上。

师:(课件)像这些连接圆心到圆上任意一点的线段,我们就把它叫做半径。半径用字母r来表示。(板书:半径r)

师:好,我们来看看,这上面哪些线段是半径呢?(课件)

师:很好,你能在自己的圆片上画一条半径和直径吗?别忘了表示字母,写上长度。

师:通过折一折,我们认识了圆心、半径和直径。通过数一数,你又发现了什么呢?

生:我发现半径有无数条。

师:半径有无数条,同意的举手。(板书:无数条)光这样说是不够的,你能说出理由吗?生:折无数次

生:圆上有无数个点。

师:还有呢?还有理由吗?生(沉默)

师:不问不知道,一问才知道,原来你们都是懵的啊?你们是懵的吗?生:不是。

师:哪些不是?(有人举手)有的同学为了捍卫自己的尊严,再次举起了手。好,你怎么想的?

生:可以自己去画。师:可以去画。现在我们来想象一下,如果给你们足够多的时间,你能画出几条?生:无数条。师:(摇头)前几天唐老师在另一个班上这个内容也探讨了这个问题,最后大家一致认为圆有无数条半径。可是就有一个同学他不相信。回家以后他自己剪了一个圆,在上面密密麻麻画满了半径,一直画的看不到任何空隙了。他数了数一共是三百多条。第二天跑来就问我:唐老师你看!明明才三百多条,你怎么就说有无数条呢?

生:(举手)换个大点的圆。

师:他的意思是说:小伙子,你的圆太小了,换个大点的。是吗?

师:可带来了问题,难道说大圆半径多,小圆半径少吗?或者我们干脆就把结论改为大圆半径有无数条?师:还有不同意见吗?

生:我认为画半径的笔细一些。

师:同学们,别小看了刚才同学的想法,他其实一下子就告诉了我们数学最基本的地方。那就是线段它可以无限的细下去。一直细到看不见为止,那这样的话我们就可以说圆有多少条半径?生:无数条。

师:听听你们的声音,中气都比原来足了。对不对?

师:圆有无数条半径的特征我们已经探讨的比较清楚了。通过量一量,你还发现了什么呢?

生:我发现直径是半径的两倍。

师:你想说的是:直径长度是半径长度的两倍对不对?你的直径长多少?半径呢?

师:那么你们的直径与半径长度也有这样的关系吗?师:谁能用字母表示直径与半径的关系?生:d=2r

师:也可以说?生:R=d/2

(板书:d=2r r=d/2)

师:除了直径与半径的关系,还有别的发现吗?生:我发现所有的直径长度相等。生:我还发现所有的半径长度相等。

师:你们呢?所有的.直径长度相等吗?所有的半径长度也相等吗?(板书:长度相等)

师:通过量一量,大家又发现了所有直径长度相等,所有半径长度也相等。师:(收集大小不同的两个圆)好,我们来看,半径相等吗?生:不相等。

师:刚才你们不是说所有半径长度相等吗?这是为什么呢?生:因为它们不再同一圆内。师:现在你能得出什么结论?

生:在同一圆内所有的直径长度相等,所有的半径长度也相等。

师:看来,要使所有的半径长度相等这一特征成立,它必须得有一个很重要的条件,那就是:在同一圆内。(板书:在同一圆内)

师:(收集一样的两个圆)现在它们在同一个圆内吗?生:没有。

师:它们的半径长度相等吗?生:相等。

师:现在你又能得出什么结论?

生:在一样大的圆里,所有的半径长度相等,所有的直径长度也相等。

师:说的好不好?除了在同一个圆内,所有的半径长度相等所有的直径长度也相等。在相等的圆里,也是这样。(板书:等圆)

师:同学们,通过折一折、数一数、量一量,你们都有了哪些发现呢?生:发现了圆心、半径和直径。

生:也发现了在同一个圆或等圆里直径与半径的关系。师:它们是什么关系?生:d=2r,r=d/2

生:还发现了圆有无数条直径和半径。生:以及在同一个圆或等圆里所有的半径长度相等,所有的直径长度也相等的特征。师:(课件)孩子们,其实我们的这些发现早在两千多年前就被我国古代思想家——墨子所发现。在他的著作中这样描述了:圆一中同长也。所谓的一中,指的就是一个?(圆心)同长呢?又指什么?生:半径一样长,直径一样长。

师:这一发现和我们刚才的发现?(完全一致)他的这一发现比西方国家整整早了一千多年。听到这里我想大家都有一个共同的感受,那就是?生:(激动的)自豪!!四、合作探讨圆的画法。

师:发现了圆那么多的特征,想不想自己动手画一个圆呢?师:那么怎样才能既准确又方便的画出一个圆?生:可以用圆规来画。

师:对了,古人就曾说过:没有规矩不成方圆。这里的规就是手中的圆规。用来画圆。圆规有两只脚,一只是针尖,用来固定圆心;另一只是画圆用的笔。两只脚可以随意的叉开。你能试着用圆规画一个圆吗?师:(巡视中)老师发现大部分同学都画的比较好,但也有的同学画的不够理想。师:画好了吗?谁来说说画的不够理想的这些同学可能出现了什么问题?生:圆心没固定好。

生:画的时候没拿手柄,拿到下面了。

师;你们刚才说到的问题,老师在你们中间找到了证据。一起来看,这张什么问题?(投影展示)

生:太偏了。应该往中间画。

师:往中间画?怎样才能画到中间去?生:将圆心固定到纸的中间。

师:圆心固定在纸的中间,画的圆就在哪里?生:本子中间。

师:也就是说,圆心觉定了圆的什么?生:圆的位置。

师:说的非常正确。圆心决定了圆的位置。再来看看这幅有什么问题?生:没连上。师:能连上吗?生:不能。

师:猜猜看,估计是什么原因导致的?

生:肯定在画的时候改变了两脚直间的距离。师:同意他的看法吗?生:同意。

师:圆规两脚之间的距离也就是圆的什么?生:圆的半径。

师:再接着画下去,是越大还是越小?生:越小。

师:所以我们说,圆的大小取决于什么?生:半径的长短。

师:对了,圆的大小是由半径的长短决定的。与圆心的位置无关。师:到底应该怎样使用圆规画圆呢?现在我们一起来看黑板。师:(展示画圆方法)师:孩子们,根据老师刚才的画圆步骤和方法,你能再画一个半径5厘米的圆吗?(学生再次操作画圆)

师:画好了吗?举起来互相欣赏一下我们的劳动成果吧。五、圆在生活中的运用。

师:(课件)画好了圆,我们再来看看,这是什么?生:篮球场。

师:中间是个什么?生:圆。师:中间为什么是个圆而不是个正方形或长方形呢?不知道篮球怎么开赛,回答这个问题还真是有点难。一起来了解一下。(播放开赛录像)

师:从这段录像我们看见,裁判拿着球在圆心,队员在圆上,比赛一开始,队员就尽量将球传到自己的场地。现在你能解释球场的中间为什么是个圆了吗?生:因为圆心到圆上任意一点的距离都相等。

师:说的真好。这样大的一个圆,怎么画出来的呢?有这么大的圆规吗?生:没有。

师:那该怎么画呢?生:……

师:大家听明白了吗?

师:不是说,没有规矩不成方圆吗?怎么没有用圆规也能画出一个圆呢?生:规矩不应该特指圆规,而应该指的是画圆的工具。师:看来古人说的没有规矩不成方圆这句话还是对的。六、数学知识解释生活中的现象。师:现在你们能从数学的角度解释平静的水面丢进石子荡起的波纹为什么是一个个圆这一现象了吗?生:……

师:解释的太棒了。这实际就是在一个圆内,所有的半径长度相等的道理。师:看来简单的自然现象,有时也蕴含了丰富的数学规律。

师:其实在我们的生活中,除了这些能够用眼看到的圆,还有许多肉眼所看不到的圆。一起来了解一下。

(课件)太阳美妙的光环、特殊仪器拍摄到的无线电波、说话时声音的传播。师:孩子们,圆在我们的生活中无处不在,因为有了圆,我们的世界才变得如此美妙而神奇。

《圆的认识》教学设计 篇3

教学目标:

1.使学生认识圆,知道圆的各部分名称.

2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

3.初步学会用圆规画圆,培养学生的作图能力.

4.培养学生观察、分析、抽象、概括等思维能力.

教学重点:

理解和掌握圆的特征,学会用圆规画圆的方法。

教具准备:

小黑板、圆规、直尺等

学具准备:

各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等

教学难点:

理解圆上的概念,归纳圆的特征.

教学过程

一、导入新课

(一)教师用小黑板出示下面的图形

长方形正方形三角形平行四边形梯形

教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

教师指出:我们把这样的图形叫做平面上的直线图形.

(二)教师演示

一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)

二、探究新知

(一)教师让学生举例说明周围哪些物体上有圆.

(二)认识圆的各部分名称和圆的特征.

1.学生拿出圆的学具,在纸上画一个圆,再用剪刀把圆剪下来.

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

教师说明:圆是平面上的一种曲线图形.(教师在黑板上出示一个圆形图片)

3.通过具体操作,来认识一下圆的各部分名称和圆的特征.

(1)先把剪好的圆对折、打开,换个方向,再对折,再打开……这样反复折几次.

教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

教师指出:我们把圆中心的.这一点叫做圆心.圆心一般用字母O来表示.

教师在圆内板书:圆心O

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

(圆心到圆上任意一点的距离都相等)

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r来表示.(教师在圆内画出一条半径,并板书:半径r )

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.

(3)请同学们继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 d来表示.(教师在圆内画出一条直径,并板书:直径d)

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等.

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

教师小结:在同一个圆里,直径的长度是半径的2倍,反过来,在同一个圆里,半径的长度是直径的。 如何用字母表示这种关系?

教师板书:d=2rr=d/2

(三)反馈练习.

1.用彩色笔标出下面各圆的半径和直径.(教材58页做一做第1题)

2.求半径或直径

(1)已知: r=3cmr=2.5cmr=7cm

(2)已知: d=10cmd=30.2cmd=17cm

(四)圆的画法.

根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆.

1.学生自学。

2.教师示范画圆。

3.教师归纳板书:1.定半径;2.定圆心;3.旋转一周.

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚.

4.学生练习画圆。

(五)同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。

(1)先请同学们猜测一个字。(很多学生都说可以猜“样”)再请同学们猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)

(2)教师提问:

羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用教具演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,)

拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)

钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)

如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)

如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)教师板书:半径决定圆的大小,圆心决定圆的位置.

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

三、课堂练习

(一)判断

1.画圆时,圆规两脚间的距离是半径的长度.( )

2.两端都在圆上的线段,叫做直径.( )

3.圆心到圆上任意一点的距离都相等.( )

4.半径2厘米的圆比直径3厘米的圆大.( )

5.所有圆的半径都相等.( )

6.在同一个圆里,半径是直径的1/2.( )

7.在同一个圆里,所有直径的长度都相等.( )

8.两条半径可以组成一条直径.( )

(二)思考:车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?

四、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获?

五、课后作业

(一)用圆规画一个半径是2厘米的圆,并用字母o、r、d标出它的圆心、半径和直径。

(二)怎样测量没有圆心的圆的直径?(教材58页做一做第3题)

《圆的认识》教学设计 篇4

《圆的认识》教学设计

作为一名无私奉献的老师,很有必要精心设计一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。如何把教学设计做到重点突出呢?以下是小编为大家整理的《圆的认识》教学设计,希望对大家有所帮助。

《圆的认识》教学设计 篇5

一、通过操作初步感受圆的特征

1、同学们,你们认识这些图形吗?(有长方形、正方形、三角形、平行四边形、梯形、圆形)

2、在每个小组的袋子中有许多各种形状的纸片,当然这些图形的纸片也有,其中圆形纸片有四张,每人只能摸一次,你能摸出圆形纸片吗?(小组活动,袋子中还有椭圆形纸片。)

你们摸到了什么?为什么会摸出椭圆形纸片?

为什么不会摸出这些图形的纸片呢?(比较得出圆是由曲线围成的图形)

二、自主探索研究圆的特征

1、椭圆和圆虽然都是曲线围成的图形,但是可以比较容易地加以区分,也就是说,圆和椭圆相比,圆是有特殊之处的。圆究竟有什么特征呢?你们想自己研究吗?

2、取出在家剪好的圆纸片,你们在家练习了画圆,说一说画圆有什么诀窍。

结合回答,教学圆心。

3、下面可以研究圆的`特征了

活动要求:(投影)

1、自己通过比一比、折一折、量一量等方法找出圆的特征,写在记录纸上。

2、在小组中和同学交流。

3、小组总结圆的特征。

汇报:

(1)椭圆从中心到圆上的距离不相等,圆从圆心到圆上的距离相等。(教师要结合教学半径)

(2)椭圆和圆对折后都可以重合,椭圆有两种对折方法,圆有无数种对折方法。(教师要结合教学直径)

(3)椭圆没有圆圆。(提问:为什么椭圆不圆?)

(4)半径与直径的关系

三、运用圆的特征解决实际问题

1、圆的特征在生活中得到广泛的应用。

车轮为什么做成圆形?车轴为什么要安放在圆心?

2、圆的特征还能解决一些游戏问题

套圈游戏

课件演示画面:15个小朋友在玩套圈比赛,离杆心有近有远。动画:各人投了一个套圈,小明最后投,只有小明套中(小明离杆心最近)。小明高兴的神态说:“还是我投得准”

教师提问:同学们,对小明的话,你们有什么想法?(引出这样比赛不公平,大家要站在距离杆心同样远的位置)

(2)课件演示画面:15人站成一行,仍然距离杆心有远有近。

教师提问:同学们,站成一条直线行吗?到底要怎样才公平呢?(要站成圆形才公平)

课件演示画面:15人围成圆形,但杆心不在圆心。

教师提问:要站成怎样的圆形才算公平?(围着杆心,杆心要在最中间、中心)

在操场上怎样才能画出这样的一个圆形来呢?(可以把绳子拉直,一端固定不动,一端拴上粉笔,)

课件演示:为什么要一端固定不动?为什么要拉直绳子?

把小明站的位置看作圆上的任意一点,现在15人任意地站在圆上,你觉得公平吗?(公平)为什么?

3、利用圆的特征可以了解更多的信息。

(1)已知圆的半径(直径)求直径(半径)

(2)在正方形中画最大的圆,已知正方形边长。

(3)在长方形中画最大的圆,已知长方形的宽。

四、总结

如果有一位同学病假,你要打电话告诉他今天学的内容,想一想,你要告诉他什么?

《圆的认识》教学设计 篇6

教学目标:

(1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

(2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

教具:

圆规、直尺、小球、圆形纸片、磁铁、双面胶。

学具:

圆形物体、白纸、水彩笔、直尺、圆形纸片。

教学过程:

一、初步感受。

(1)自然界中的圆

同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

(2)生活中的圆。

在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

(圆形的钟面。)

(圆形的光盘。)

(圆形的瓶盖、圆形的茶叶桶盖等)

注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。) 车轮是圆的。这是车轴,这是钢丝。(电脑演示)

小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

二、探索圆的特征。

1、画车轮简图。

(1)抽象

为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

(2)画图。

这是一个车轮简图,你能很快地画一个车轮简图吗

拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

你是怎么画车轮上的圆的`呢?

(依靠圆形物体画圆)

(直接用手画圆)

(用圆规画圆)

(3)介绍圆规画圆。

圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

(1)先把圆规的两脚分开,定好两脚间的长度。

(2)把有针尖的一只脚固定在一点上。

(3)把另一只脚旋转一周,就画出了一个圆。

如果圆规的两脚之间的距离大一点,那画出来的圆就(大),那这样画出来的圆就(小)。

你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

2、原型启发,进行猜想。

(1)观察、比较。

同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

请把你的猜想和同桌交流一下。

(2)交流、汇报。

你有哪些猜想呢?

(圆形物体可以滚动,没有角)

(圆都有一个中心)

(圆的中心到圆的边缘的距离相等)

(3)小结:

刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

3、验证

(1)下面我们来验证一下。

先来验证第一个猜想。

你感觉圆会有中心吗?

会有有几个中心呢?

会有两个中心吗?

圆的中心在哪儿呢?

你能准确地找到这个圆形纸片的中心吗?

请大家拿出事先剪好的圆片。自己想办法来找一找。

找到了吗?你是怎样找到的呢?

(用尺量的。)

(用圆规找的。)

(用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母o表示。(圆的中心改成圆心)。

(3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等) 因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

这里的曲线上我们给它个名称叫圆上。(改成圆上)

圆心到圆上的距离相等。

这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

真的都相等吗?

你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。) 巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

学生介绍验证的方法。

量的方法;

折的方法。

你折了几次?

折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

(4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

4、进一步体会圆的本质。

下面我们来做个游戏,进一步感受一下圆的特征。

(1)线上的小球转动。

我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

我们用电脑模拟。

(2)橡皮筋上的小球转动。

我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

我们用电脑模拟一下;

小球划出的是什么图形?

(电脑演示)是圆吗?

为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

(因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

5、认识半径、直径。

刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本p116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

有哪些概念啊?

什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

有几条半径呢?为什么?这无数条都相等吗?

什么直径?那你在圆片上画一条半径,用小写字母d表示。

有几条半径呢?为什么?这无数条都相等吗?

直径和半径之间有什么样的关系呢?

判断直径(电脑演示)

5.判断题:

(1)从圆心到圆上任意一点的距离都相等。

(2)所有半径都相等,所有的直径也相等。

(3)半径3厘米的圆比直径5厘米的圆要小。

(4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

三、解释与运用。

大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

为了更好地解释这一现象,我们来做一个对比实验。

现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

(因为第一种车上,车轴到地面的距离不变)

(在第二种车上,车轴到地面的距离在变化。)

为什么在圆形车轮中,车轴到地面的距离始终不变化?

(因为在同一个圆里,所有的半径都相等。)

看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。