三角形的面积教学设计
此篇文章三角形的面积教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
三角形的面积教学设计 篇1
教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:三角形面积计算公式的推导过程
教学难点:在转化中发现内在联系及推导说理。
教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。
设计思路:
本节课有以下几个特点:
1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。
2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。
教学过程
一、创境引新
1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)
这个公式是怎样推导出来的呢?
电脑动态演示割拼的转化过程。
形成板书:
转化 找关系 推导
学生看大屏幕,
口答:s=ah
学生口述平行四边形面积公式的推导过程。
2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?
三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)
生可能会说:求出它的面积。
二、自主探索
合作交流1、谈话启思。
我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?
2、操作探索。
(1)四人小组合作进行操作、探索。
(2)小组汇报、交流、展示。
学生可能会拼出以下图形:
(3)课件演示拼出的各种图形。
(4)设疑:
这些图形中哪些图形的面积你会计算?
通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?
你能不能很快的把两个完全相同的三角形拼成平行四边形。
老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?
电脑演示转化的动态过程。
(5)找关系。
师:拼成的平行四边形与原三角形有什么关系?
课件出示:
a.拼得的平行四边形的底与原三角形的底有什么关系?
b.拼得的平行四边形的高与原三角形的高有什么关系?
c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?
(6)汇报
在学生回答的基础上师用电脑演示。
(7)尝试推导说理。
师:根据你们的发现,你能推导出三角形的面积计算公式吗?
在学生的汇报中形成板书:
三角形的'面积=平行四边形的面积÷2
底 × 高
= 底× 高÷2
师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?
完善板书:s=ah÷2
学生口答:长方形、平行四边形。
生:两个完全一样的三角形能拼成平行四边形。
学生操作,感到不是很容易。
学生观看转化过程。
尝试旋转、平移的方法。
小组讨论交流。
小组派代表发言。
学生讨论后回答,并说说自己是怎样推导的?
学生发言。
学生齐说:s=ah÷2
3、探究用一个三角形进行割补转化推导。
师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?
师:下面我们来观察电脑上是怎样操作的?(点击课件)
师:同学们若有兴趣,课后可以继续探索不同的割补方法。
小组合作探究,
汇报交流。
学生观看运用割补法将一个三角形转化成平行四边形过程。
三、实践应用
拓展提高
1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?
你能估计一下它的底有多长吗?(课件出示红领巾)
一条红领巾的面积是多少平方厘米?
2、看图计算面积。
3、你认识这些道路交通标志吗?谁来说说。
(课件出示)
师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)
你来帮他们算算需要多少铁皮?
4、判断。
(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(2)、等底等高的两个三角形,面积一定相等。()
(3)、两个三角形一定可以拼成一个平行四边形。()
(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()
5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。
学生估计底的长度。
学生独立完成,一人板演。做完后集体订正。
学生口述列式。
通过图3知道要用对应的底和高计算面积。
学生说说自己认识交通标志。
学生独立完成,然后交流。可能出现下面两种方法。
方法一:s=ah÷2
=7.8×9÷2
=35.1
35.1×2=70.2(平方分米)
方法二:s=ah
=7.8×9
=70.2(平方分米)
学生判断,并说明理由。
四、评价体验
通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)
学生之间互相评价。
教学反思:
1、利用远程教育资源,创设教学情景。
利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。
2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。
割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。
3、利用远程教育资源,提高学生应用新知识的能力。
练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。
总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。
三角形的面积教学设计 篇2
教材分析:
三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。
设计思路:
本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。
采取小组学习的教学形式,为学生营造一种宽松、自由的探索氛围。
教学准备:
1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;
2、 量具一张,铅笔一支,剪刀一把;
3、 视频展示台、电脑、实物投影仪。
教学过程:
一、揭示课题
师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?
我们是怎样发现这一计算公式的.?
①学生回忆公式推导过程。
②电脑动画演示。
小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。
揭示课题——三角形面积的计算
二、探究新知
1、学生操作
每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。
a、 学生动手操作;
b、老师巡视。
学生把自己的发现用教具贴在黑板上。
2、汇报、交流
师:观察这些图形,你发现了什么?
a、 学生在小组内互相说。
b、指名说。
3、推导公式
师:根据你们的发现,你能推导出三角形面积的计算公式吗?
学生小组讨论,说说自己是怎样推导的。
教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。
4、小结
刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。
说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?
板书:三角形的面积=底×高÷2
=a h÷2
附板书设计:(略)
三角形的面积教学设计 篇3
教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。
学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。
教学目标
1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。
教学重点
在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
教学难点
培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。
学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。
教学过程
一、复习准备:
1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?
谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:
长方形的面积=长×宽。
平行四边形的面积=底×高。
2、出示红领巾。
(1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?
(2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。
二、合作探究:
1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?
2、探究三角形面积计算公式。
教师:我们学习过哪些求面积的方法?(数方格和转化的方法)
教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。
①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)
②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)
三、探讨交流。
1、组织全班学生进行交流,说明推导公式的过程。
2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。
3、让转化小组说明推导的'公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。
4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。
5、引导转化小组学生总结三角形面积的计算公式,同步板书:
两个相同的三角形=一个平行四边形。
平行四边形的面积公式=底×高。
三角形的面积公式=底×高÷2。
用字母表示公式:s=ah÷2。
6、教学例题2。
四、巩固练习。
(1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。
(2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?
三角形的面积教学设计 篇4
【教学内容】
探索活动(二)《三角形的面积》教材第25页——26页
【教学目标】
知识目标:①使学生经历、理解三角形面积公式的推导过程。
②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。
【教学重点】
理解三角形面积计算公式,正确计算三角形的面积 理
【教学难点】
理解三角形面积公式的推导过程。
【课前准备】
三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。
教师准备多媒体课件一份、演示教具一套
【教学进程】
一 复习引入
1、出示课件
师:比一比,下面两个图形哪个面积大?
生:观察 比较 说说你是怎么比较的
师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。
2、回顾平形四边形面积公式的推导
师:谁能告诉老师平形四边形面积公式推导过程
生答后,师课件演示
师:在这个过程,我们运用了一个什么数学思想。
生:转化
师板书:转化
师:现在,我们已经掌握了几种图形的面积公式了呢?
生答后,师简要小结
3、设疑,引入新课
小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识
师板书:三角形的面积
二、探究新知
1、知识猜想
师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?
生讨论、作答(可能和底、高有关)
2、动手实践
一组学生拿出直角三角形学具
二组拿出锐角三角形学具
三组拿出钝角三角形学具
四组拿出任意三角形学具
剪一剪、拼一拼,你能发现什么?
师巡回检查、指导
3、实践汇报
各组汇报实践结果
一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。
二组:两个完全一样的锐角三角形也可拼成一个平行四边形。
三组:两个完全一样的钝角三角形也可拼成一个平行四边形。
四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。
各组就实践汇报展开讨论。
4、演示总结
师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?
出示课件(演示1两个完全一样的三角形拼成平行四边形)
师引导生观察
(1)、拼成的平行四边形和原三角形面积有什么关系?
生:平行四边形面积是三角形面积的2倍。
(2)、平行四边形的底和高与三角形的哪些部分有关?
生:平行四边形的高等于三角形的高;
平行四边形的底等于三角形的底
师小结并板书
平等四边形的面积= 底 × 高
三角形的'面积= 底 × 高 ÷ 2
出示课件(演示2一个三角形剪拼成平行四边形)
师:观察平行四边形面积与原三角形面积有何关系?
生:相等
师:平行四边形的底和高与三角形底、高有什么关系?
生:平行四边形的底等于三角形的底
平行四边形的高等于三角形的高的一半
师小结并板书
平行四边形面积= 底 × 高
三角形面积= 底 × 高 ÷ 2
三角形的面积=底×高÷2
字母表示: S=ah÷2
5、师生一起回顾三角形面积公式的推导过程
6、基本练习
师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?
生:能
师:好那大家帮他算一算
生解答,师巡回检查
强调:1、注意运用公式 2、注意面积单位
三、巩固检测
1、出示课件
师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?
生答、师订正
师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?
生独立完成
师统一订正
2、出示课件
师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?
生板演 师讲解订正
四、回顾总结
师:学完这节课,你都有些什么收获呢?
生讨论、作答
师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。
附:【板书设计】
三角形的面积
平行四边形面积 = 底 × 高
转化
三角形面积= 底 × 高 ÷ 2
S= a×h÷2
三角形的面积教学设计 篇5
学习内容:
第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。
学习目标:
1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
学习重点:
理解并掌握三角形面积的计算公式
学习难点:
理解三角形面积公式的推导过程
学习过程:
一、先学探究
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、出示一个底是4分米,高是3分米的平行四边形。
这是一个什么图形?它的面积如何计算?
■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。
二.交流共享
■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。
【板块一】学习例4:
仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?
先自己想,随后在小组中交流。
你是怎样求出每个涂色的三角形的面积?
三角形与平行四边形究竟有怎样的'关系?
三角形的面积应当如何计算?
【板块二】学习例5:
(1)出示例5:
用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
小组交流:如何计算一个三角形的面积?
从表中可以看出三角形与拼成的平行四边形还有怎样的关系?
得出以下结论:
这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=
(4)用字母表示三角形面积公式:
三、反馈完善
1、完成试一试:
2、完成练一练:
(1)先回忆拼得过程,再回答。(2)你是如何想的。
3.判断。
(1)两个形状一样的三角形,可以拼成一个平行四边形.……
(2)平行四边形面积一定比三角形面积大.……
(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………
(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….
4.完成课本第17页第6题。
5、拓展练习
量出你的三角板(两个任选一个)的底和高,然后算出它的面积。
6、课外延伸:阅读第16页“你知道吗”
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
三角形的面积教学设计 篇6
教学内容:
人教版五年级上册84----85页
教材分析:
三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
学情分析:
学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的'现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:教法:
演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
三角形卡片、多媒体课件
教学过程:
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
 返回首页
    返回首页