返回首页
智远网 > 短文 > 教案 > 正文

比的基本性质教学设计

2025/10/19教案

此篇文章比的基本性质教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

比的基本性质教学设计 篇1

教材分析

《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。

学情分析

学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。

教学目标

1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的`数学思想。

教学重点和难点

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:掌握化简比的方法。

教学过程

活动一

1、出示例1,出示例1,让学生解答。

2、教学比例的基本性质

(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的关系验证。

②根据比值验证。

......

③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?

活动二

1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

2、根据你自己的理解,能说一说什么是最简单的整数比吗?

(前项和后项是互质数。)

3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。

让学生试做后,总结方法。

4、出示例1(2)①1/6:2/9②0.75:2

学生先讨论方法,再试做。

5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

6、化简比与求比值有什么不同?

7、质疑

活动三

1、做一做46页化简比。

2、48页第4题

教学反思

比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!

注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。

“兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。

教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。

比的基本性质教学设计 篇2

教学目标:

1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。

2、培养学生的观察能力、判断能力

教学重点:引导学生观察、讨论、试算,探究比例的基本性质。

教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、激趣导入

1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)

2、还是让老师给你点提示吧!

课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。

3、现在知道是什么了吧!课件出示:扑 克牌

(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)

二、探究新知

(一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。

2、学生汇报写出的比例并说明理由。

3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)

4、就学生汇报的比例,找出内项与外项。

(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)

(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)

1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)

课件出示:

冠军攻略

参赛者:王老师,全班同学

规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)

2、第一轮:6、8、9、12

(老师比学生提前写完,并由学生验证,得出老师胜)

第二轮:3、5、4、8

(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3

(老师比学生提前写完比例,并由学生验证,老师胜)

(设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)

3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?

4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”

5、师讲解如何很快的判断4个数能否组成比例。

(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)

看样子,同学们对新知掌握的不错,愿意接受挑战吗?

(三)练习运用。

1、应用比例的基本性质,判断下面哪组中的'两个比可以组成比例

6∶3和8∶50 2∶2.5和4∶50

2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

指出:2.4与40的乘积等于1.6与60的乘积。

三、课堂巩固,练习提升

1、用你喜欢的方法来判断哪组中的两个比能否组成比例。

(1)14:21和6:9 (2)3/4:1/10和15/2:1

(3)9:12和12:15 (4)1.4:2和7:10

2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)

3、根据比例的基本性质,在括号里填上合适的数。

8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9

四、实践活动题

8:A=B:1.5,那么A和B可能是( )和( )

如果A是小数,那么A可能是( ),B可能是( )。

如果A-B=1,那么A可能是( ),B可能是( )

如果A+B=7,那么A可能是( ),B可能是( )

(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)

五、全课总结

通过这节课的学习,你有哪些收获?

比的基本性质教学设计 篇3

教学内容:课本第50页例2;练一练;《作业本》第22页。

教学目标:

1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

教学重点:比的基本性质和化简比

教学过程:

一、准备练习:

1、求下列各比的比值。

12:201:1:1.5:2.5

2、在()里填上适当的数。

⑴=()()=():()

⑵====

(第1题:分数与除法的关系;第2题:分数的基本性质)

3、复习比与除法、分数的关系。(完成上堂课的表格)

二、教学新课:

1、引入。

分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?

(1)学生试着叙述。

(2)反馈小结。

分数基本性质、除法的`商不变性质中的都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

2、看书验证自己的猜想。P50页。

3、什么是最简单的整数比?

(1)下面哪些是整数比?哪些整数比最简单?为什么?

6:1012:210.3:0.40.25:1

3:54:73:4:

(2)教师小结:

像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。

4、教学例2。化简比。

(1)应用比的基本性质可以把比化成整数比。

自学课本P50、51例2、例3)

(2)小结:

①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

(3)试一试。

三、巩固练习:练一练

四、小结:

今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

五、《作业本》第22页。

比的基本性质教学设计 篇4

教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点 :

1.理解并掌握比例的基本性质。

2.探究、发现比例的基本性质。

教学准备:多媒体课件

教学过程:

一、复习旧知

1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。 2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

3∶6 =1∶2

所以 6∶10 = 9∶15 生2: 因为 20∶5 = 4∶1

28∶7 = 4∶1

所以 20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。 2.认识比例的项

(1)观察这几组比例,它们有什么共同点?

说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。 (2)结合6:3=4:2具体说一说

在比例6:3=4:2中,组成比例的四个数“

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

3.探究比例的基本性质

认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。 4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的`积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。 8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

(2)应用比例的基本性质判断能否组成比例

(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、巩固练习

1.完成“练一练”第1题。 (1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

2、练习七第2题

(1)下面四个数

5、

7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。 4.我是小法官,对错我来判。

(1)在比例中,两个外项的积减去两个内项的积,差是0。 ( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。 ( ) 5.完成“练一练”第2题

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。 (2)学生独立完成第2小题。

四、全课总结

今天我们学习了什么内容?你有什么收获?

比的基本性质教学设计 篇5

教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

教学目标:

(一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

(二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

教学过程:

(一)复习旧知识,做好新课铺垫

1、提问:①什么叫做比?

②除法、分数、比之间有什么联系吗?

根据学生的回答板书。

被除数÷除数==前项:后项

2、观察下面的每组题目,你有什么发现吗?

第一组:12÷4=3

(12×3)÷(4×3)=3 商不变

(12÷2)÷(4÷2)=3

第二组:=3

==3 分数值不变

==3

先让学生分组讨论,再组织全班交流。

根据交流情况适时板书

被除数÷除数==前项:后项

商不变性质 分数基本性质

[评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

(二)新课,概括比的基本性质。

1、再观察一组题目

例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

填写下表,并把比值相等的比填入等式。

质量/g 体积/cm3 质量和体积的比值

第一瓶 4 5

第二瓶 16 20

第三瓶 50 50

第四瓶 40 50

( ):( )=( ):( )=( ):( ) }比值不变

1、学生独立填写后。

2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

问:为什么比的后项不能为0?指出:比的`后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。

3、上面三个相等的比哪个更简单一些?

学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

(三)利用比的基本性质化简比

例4:把下面各比化成最简单的整数比。

(1)12:18 (2) (3)1.8:0.09

讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

根据学生的回答,整理后板书。 板书后追问:

12:18=(12÷6):(18÷6) 为什么要同时除以6?

=2:3

=(×12):(×12) 为什么要同时乘以12?

=10:9

1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

=180:9

=20:1

小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

[评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

四、沟通联系,深化认识

1、指导完成“练一练”

做第1题。学生独立填完后,要求说说是怎样想的?

做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

2、指导完成练习十三第6~9题

做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

五、课堂总结:

今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

教学评析:

1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

比的基本性质教学设计 篇6

教学目标:

1.认识比例各部分名称,理解比例的基本性质。

2.能根据比例的基本性质,正确判断两个比能否组成比例。 3.在自主探究、观察比较中,培养学生分析、概括能力。

教学重、难点:

重点:理解比例的基本性质,能正确判断两个比能否组成比例。 难点:自主探究比例的基本性质。

教学过程:

一、引入

同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)

对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)

对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?

生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。

二、探索新知

师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?

(给出数据: 20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)

反馈板书: 20∶30=10∶15

30∶15=20∶10

10∶15=20∶30

20∶10=30∶15 讲解:内项与外项

刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的`四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)

观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈: 在比例里,两个内项的积等于两个外项的积。

师:同意吗?

师:说说你是怎么想的,(板书:20×15=30×10)

师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?

学生写并小组内交流。

谁再来说一说这一发现?

师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)

如果a∶b=c∶d,那么这个规律可以表示成什么?

学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?

说一说 1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。

313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填

根据比例的基本性质,在括号里填上合适的数。

2∶3=4∶( )(口答) 再出示:

2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?

看来用

2、

3、

4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。

反馈:有什么好方法能写的又对又快。

三、课堂小结