返回首页
智远网 > 短文 > 教案 > 正文

圆数学教案

2025/10/27教案

此篇文章圆数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。

圆数学教案 篇1

【学习目标】

1、感受数学探索的成功感,提高学习数学的兴趣;

2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。

3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。

【学习重点】三角函数的诱导公式的理解与应用

【学习难点】诱导公式的推导及灵活运用

【知识链接】(1)单位圆中任意角α的正弦、余弦的定义

(2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的`点坐标

【学习过程】

一、预习自学

阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:

(1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

(2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

(3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

(4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

二、合作探究

探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。

(1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°);

探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)

探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。

三、学习小结

(1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?

(2)本节学习涉及到什么数学思想方法?

(3)我的疑惑有

【达标检测】

1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),

则sin(-α)= ;cs(α±π)= ;cs(π-α)=

2.求下列函数值:

(1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=

3、若csα=-1/2,则α的集合S=

圆数学教案 篇2

教学内容:

教材第59页及相关题目。

教学目标:

1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

3、培养学生观察周围事物的兴趣,提高观察能力。

教学重点:

认识圆的对称轴。

教学难点:

用圆设计图案的方法。

教学准备:

多媒体课件、圆规、直尺等。

教学过程:

学生活动(二次备课)

一、复习导入

1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。

3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

二、预习反馈点名让学生汇报预习情况。

(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

三、探索新知

1、设计美丽图案——花瓣。

(1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

(2)想一想,自己尝试画一画。可参考课本第59页的步骤。

(3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

2、设计美丽的图案——风车图。

(1)观察图案,想一想如果画这个图案,应按怎样的'步骤。

(2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

①先画一个圆,在圆内画两条互相垂直的直径。

②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

③把所画半圆涂上颜色。

3、设计美丽的图案——太极图。

指名说一说画太极图的步骤:

(1)画一个圆,在圆内画一条直径。

(2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

(3)把圆的一半涂上颜色,如图所示。

四、巩固练习

1、完成教材练习十三第6题。

2、完成教材练习十三第8题。

3、完成教材练习十三第9题。

五、拓展提升

观察图案,说一说下面两个图案的画法。

六、课堂总结

让学生说一说这节课的收获。

七、作业布置

教材练习十三第7题和第10题的第1、4个图案。

画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

教学反思

成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

圆数学教案 篇3

教学目标:

(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

教学重点:

正多边形的概念与正多边形和圆的关系的第一个定理.

教学难点:

对定理的理解以及定理的证明方法.

教学活动设计:

(一)观察、分析、归纳:

观察、分析:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

归纳:等边三角形与正方形的边、角性质的共同点.

教师组织学生进行,并可以提问学生问题.

(二)正多边形的概念:

(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

(2)概念理解:

①请同学们举例,自己在日常生活中见过的`正多边形.(正三角形、正方形、正六边形,…….)

②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

(三)分析、发现:

问题:正多边形与圆有什么关系呢?

发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

(四)多边形和圆的关系的定理

定理:把圆分成n(n≥3)等份:

(1)依次连结各分点所得的多边形是这个圆的内接正n边形;

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

我们以n=5的情况进行证明.

已知:⊙O中, ====,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.

求证:(1)五边形ABCDE是⊙O的内接正五边形;

(2)五边形PQRST是⊙O的外切正五边形.

证明:(略)

引导学生分析、归纳证明思路:

弧相等

说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

(2)要注意定理中的“依次”、“相邻”等条件.

(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

(五)初步应用

P157练习

1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

2.求证:正五边形的对角线相等.

3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

(六)小结:

知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

能力和方法:正多边形的证明方法和思路,正多边形判断能力

(七)作业 教材P172习题A组2、3.

圆数学教案 篇4

教学目标

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

教学重难点

教学重、难点:

1、圆的特征。

2、准确画圆

3、同一个圆里半径与直径的关系。

教学过程

一、师生谈话,导入新课

课件出示图:

师提问:同学们看,这是什么图形?在我们的生活周围,你还知道哪些物体的形状是圆形的?

学生举例说。

(硬币、茶杯盖的形状、玻璃器皿的外形等等)

课件出示图,这些都是由什么图形构成的?

师:现在我们来做一个游戏:老师这里有一个布口袋,里面有很多的东西。我请大家来摸一个圆形?看谁能一下子摸出来。

指名学生上台操作。

提问:你是怎么判断出来的?学生回答后,

教师提问: 那么,什么叫圆呢?它与我们以前学过的平面图形有什么不同?

学生回答后,

教师进行小结:圆是平面上的一种曲线图形。

二、动手操作,研究特征

师:刚才大家已经认识了圆,那么,想不想把它画出来看一看呢?请你在白纸上画一个圆。

学生自由画,稍后,教师讲评学生的作业:说说你是怎么画的?用了什么方法?

比较一下,谁的方法画的圆比较好?大家一致同意用圆规的方法比较精确。教师讲解画圆的方法。

现在就请每个同学用圆规在第二张白纸上画一个圆。学生开始操作,

几分钟后,学生全部完成了作业。老师让大家四人一组,把四个人的圆放在一块,相互欣赏一分钟,可以说一句表扬的'话。

师:欣赏完了刚才四个同学画的圆以后,你发现四个人的作品有什么不一样啊?

学生说:我发现了四个圆的大小不一样,画在纸上的位置也不一样。

老师提问:那么,你们知道为什么圆的位置会不一样?

生说:我们把圆规的针尖放在纸的位置不一样。

师:对呀。你知道这个点叫什么吗?它就是圆心。找出自己画的圆的圆心。并写上字母O。

师:现在大家都明白了,是谁决定了圆的位置?

那么,又是谁决定了圆的大小呢?

学生讨论后,得出了圆规两只脚拉开的大小就决定了圆的大小。

师:如果要用一条线段表示圆规两只脚间的距离,小组讨论一下,该这样表示。

教师在黑板上画的圆上任意画一条线段,让学生判断是否正确。提问:从圆心到圆上任意一点的线段叫什么?

再画几条线段,这是半径吗?

那么,现在你们明白了是什么决定了圆的大小。

教师进行小结:在同一个圆内,半径有无数条,所有的半径都相等。

6、用圆规画一个半径是2厘米1.5cm的圆。同桌评价一下是否正确。

7、玩一玩:刚才老师给大家发了一个圆形的纸片:老师忘了画圆心,你能帮助老师给找出来吗?

生:我把纸条对折,发现了有一条折痕,所有的折痕集中在一点,这一点就是圆心。师:你们同意吗?折痕叫什么名称呢?

师:请大家看书找出这个折痕叫什么?在此基础上,引出直径的概念。

师:在自己画的圆中,画出几条直径,看看直径有什么特点。它与半径有关系吗?

学生自由操作,同桌学习交流:得出了在同一个圆内,直径有无数条,所有的直径都相等,而且直径是半径的两倍(半径是直径的一半)。

用字母怎么表示呢?学生继续看书。

三、巩固应用

1、口答(填一填,我能行! )

2、判断对错,并说明理由。

①在同一个圆中,从圆心到圆上任意一点的距离都相等。( )

两端都在圆上的线段叫做直径。 ( )

③画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。( )

④直径3厘米的圆比半径2厘米的圆大。 ( )

⑤直径是半径的2倍。 ( )

3、操作:你能量出一元硬币的直径是多少吗?四人小组共同进行,看看你们能想出几种方法?

布置作业:

实践:

1.体育节要到了,铅球裁判员王老师犯愁了:铅球比赛场地上的圆圈还没画呢,圆圈的直径是2.35米,可没有这么大的圆规怎么办呢?同学们,你们能帮帮他吗?课后请四人小组讨论好方法并到操场上去实际做一做。

2.大象想在一个边长20厘米的正方形铁皮上剪出一个最大的圆用作铁皮水桶的底,你们能既迅速又准确做到吗?课后试一试。

四、课堂总结

通过这节课,你学会了什么?你有什么收获?

圆数学教案 篇5

第一单元圆的周长和面积

一.本单元的基础知识

本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

二.本单元的教学内容

P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

三.本单元的教学目标

1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的'周长与面积。

四.本单元重难点和关键

1.教学重点:求圆的周长与面积。

2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

五.本单元的教学课时

13课时

圆数学教案 篇6

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的`图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:

刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2=3.1442=3.1416=50.24(平方厘米)

答:它的面积是50.24平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?