返回首页
智远网 > 短文 > 教案 > 正文

五年级数学教案

2025/11/07教案

此篇文章五年级数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。

五年级数学教案 篇1

课型:新授

教学内容:教材P5~6例3、例4及练习二第1、9题。

教学目标

知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。

过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。

情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。

教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。

教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。

教学方法:观察、分析、比较。

教学准备:多媒体。

教学过程

一、复习引入

1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3

口算后提问:从14×3和1.4×3的口算中,你有什么发现?

2.列竖式计算。26×7 1.36×12 30.8×25

学生独立完成,指名板演,订正时让学生说一说计算的过程。

3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)

二、自主探究

1.创设情境,引入问题。出示教材第5页例3的主题情境图。

师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)

师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?

全班交流,然后说出解决问题的方法。

师:我们该如何解决问题呢?

生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。

师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8

师:这个式子中,两个因数都是小数,该如何计算呢?

生1可以用竖式计算:×0.8

生2:也可以把它们可作整数来计算(下左)。

师:那么如何求一共需要多少油漆呢?

生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)

所以一共需要1.728千克油漆。

师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?

学生小组交流讨论,老师加以总结。

小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。

师:看一看算式的两个因数中一共有几位小数?积呢?

生:两个因数中一共有2位小数,积也有2位小数。

2.探究小数乘法的计算方法。完成P6例4上面的填空。

(l)组织学生尝试完成教材第5页的“做一做”。

(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。

(3)教学例4。 0.56×0.04

师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的.积的小数位数不够,那么如何点小数点呢?

学生讨论,教师板书。

师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

师:观察黑板上各题,小组讨论。(出示讨论提纲。)

讨论提纲:①小数乘小数,我们首先怎样想?

(把两个因数的小数点去掉,转化为整数乘法。)

②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)

③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?

(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)

3.根据上面的分析,想想小数乘法是怎样计算的?

学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。

生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。

教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。

三、巩固练习

1.不计算,说一说下列各题的积有几位小数。

2.3×0.4 0.08×0.9 7.3×0.06

9.1×0. 03 0.25×0.23 45.9×3.5

提问:怎样判断积有几位小数?

2.用竖式计算。(教材第6页“做一做”的第1题)

提问:你是怎样计算0.29×0.07的?

3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。

师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。

师:一个数(0除外)乘大于1的数,积比原来的数大。

一个数(O除外)乘小于1的数,积比原来的数小。

四、课堂小结

师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)

作业:教材第8~10页练习二第1、9题。

板书设计:

小数乘小数

2.4×0.8=1.92 0.56×0.04=0.0224

1看、2算、3数、4点

五年级数学教案 篇2

整理和复习

教学要求掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。

教学准备投影片(仪)

教学过程

一、边练习边复习

学生在课本上自己完成,并根据题目体会:

1.分段对数据整理的'方法

2.怎样从复式统计表中获取信息。

3.求平均数应用题应该注意什么问题?

二、学生小组合作学习

1.统计的步骤是什么?对应的方法是什么?

2.求平均数应用题的思路是什么?(分什么;按什么分)

三、课堂实践

练习四的1~3题。

四、课外实践

练习四的第4题。

课后反思:

学生习惯于用自己的方法进行学习,因此在教学中应该鼓励学生大胆地去尝试,用多样化的方法方式进行探索。

五年级数学教案 篇3

教学目标

1.通过直观的操作活动,理解异分母分数加减法的算理。

2.能正确计算异分母分数的加减法。

教学重点

异分母分数加减法的计算法则。

教学难点

把分母不同的分数通过通分化成分母相同的分数。

教具、学具

学生准备几张用来折纸的纸张。

教师指导与教学过程

学生学习活动过程

设计意图

1、复习引题

1.在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?

2、先看书上的折纸活动

师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式

3、新授

1.估一估他们用了这张纸的几分之几?

2.再算一算他们用了这张纸的几分之几?

3.重点教学加的计算教师引导学生理解要先通分然后才能计算的.算理。

口算。

2/7+3/7=5/6+1/6=

13/14-3/14=

1/12+5/12=

同桌的两个同学也像那两个同学一样折一折纸,并列出算式:

1/2+1/4=

通过折纸来估计

小组讨论书上两幅图的计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。

回忆同分母分数加减法的计算方法。

通过折纸学生直观的认识到异分母分数加减计算的学习必要性。

通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。

教师指导与教学过程

学生学习活动过程

设计意图

4.总结异分母分数加法的计算法则。

5.自学异分母分数减法

学生自学,教师巡回指导。

4、巩固练习

Ρ65练一练

5、全课总结

学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。

学生自己看书学习

第(2)题小红比小明多用了这张纸的几分之几?

根据加法的法则自己总结法则。

学生独立完成第1题教师指名回答说说是怎么想的

培养学生总结归纳知识的能力。

在独立探索中掌握异分母分数减法的计算方法。

学习知识的归纳总结

板书设计:折纸

异分母减法的计算方法:

分母不相同的分数相加减,要先通分,化成相同的分母,再加减。

练习

五年级数学教案 篇4

教学内容

质数和合数

教材第14页的内容及练习四第1~3题。

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?最大的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的.这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

板书设计

教学反思

1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级数学教案 篇5

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的'体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级数学教案 篇6

教学目标:

1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。

2,学会找出生活问题中相等的数量关系,正确列出方程。

3,培养学生根据具体情况,灵活选择算法的意识与能力。

4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。

教学重点:

用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。

教学难点:

分析问题中的等量关系,并会列出方程解答。

教学准备:

多媒体课件。

教学过程:

一,知识回顾:

1,解下列方程。

X+2x=147 y-34=71

2,根据下面叙述说说相等关系,并写出方程。

①公鸡x只,母鸡30只,是公鸡只数的2倍。

②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……

(足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)

让学生独立做,集体订正时,(板书线段图)。

二,合作探究:

1,教学例1(媒体出示教材情景图)。

"足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的.2倍少4块,共有多少块黑色皮"

(1)审题,寻找解决问题的有用信息。

提问:"例题与复习题有什么相同的地方" "有什么不同的地方"

教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。

教师板书:稍复杂的方程

(2)分析,找出数量之间的相等关系(教师板书线段图讲解)

看图思考:白色皮和黑色皮有什么关系

学生小组讨论,汇报结果。

可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数

黑色皮的块数×2-白色皮的块数=4

黑色皮的块数×2=白色皮的块数+4

(3)同桌讨论怎样列出方程。

(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。

板书学生的方程并选择2x-4=20讨论它的解法。

学生小组讨论解法。

汇报交流板书:

解:设共有x块黑色皮。

2x-4=20

2x-4+4=20+4

2x=24

2x÷2=24÷2

x=12

检验:(引导先生口头检验)

答:共有12块黑色皮

(5)学生选择其余的方程解答。

2,变式练习。

(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。

(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。

3,引导学生总结列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示。

②分析,找出数量之间的相等关系,列方程。

③解方程。

④检验,写出答案。

三,巩固应用

1,只列式不计算。(课件出示)

①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。

④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。

2,学生独立完成,集体汇报交流

①北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米

②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米

③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km

④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒

3,拓展提高。

①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少

②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少

四,全课总结

今天这节课你学到了什么知识

板书设计:

先把2x看作一个整体