返回首页
智远网 > 短文 > 教案 > 正文

《三角形内角和》教学设计

2025/11/18教案

此篇文章《三角形内角和》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《三角形内角和》教学设计 篇1

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】

一、激趣引入。

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的.分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

二、探究新知。

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

师:你知道什么是三角形“内角和”吗?

生:三角形里面的角加起来的度数。

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

三、解决疑问

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

四、巩固提高。

1、填空。

(1)三角形的内角和是()度。

(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

2、求下面各角的度数。

(1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。

(2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。

3、判断每组中的三个角是不是同一个三角形中的三个内角。

(1)80° 95° 5°( )

(2)60° 70° 90°( )

(3)30° 40° 50°( )

4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

对学生进行思品教育。

5、思考延伸。

根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

五、总结。

《三角形内角和》教学设计 篇2

学习目标:

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

4.能应用三角形内角和的性质解决一些简单的问题。

教具、学具准备:

课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。

教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

教学过程:

一、谈话导入

猜谜语:形状似座山,稳定性能坚

三竿首尾连,学问不简单

(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

师:就这么简单的一个三角形我们就得出了那么多的知识,你们

说数学知识神气不神奇?

今天我们还要继续研究三角形的新知识。

二、创设情境,引出课题,以疑激思

师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

生3:当然是大三角形的内角和大了。

生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:

三角形的内角和)

三、动手操作,探究问题,以动启思

1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

(学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定

2、小组合作探究:

师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。

(1)、小组合作

,讨论验证方法(2)汇报验证方法、结果

师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

样?

方法一:

生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

生:不管什么三角形三个角都能拼成一个平角。

师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

方法二:

生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:请这位同学折来给大家看看。

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

师:说得真清楚。

方法三:

学生C:测量角的度数,再加起来。(填表)

师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

3、小结:

师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

四、自主练习,解决问题:

师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。

60。

30。

90。

(2)42。

54。

58。

80。

2、第二关:庐山真面目:求三角形中一个未知角的度数。

3、第三关:解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的`风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通警示牌“让”为等边三角形,求其中一个角的度数。

4、第四关:变变变(拓展练习)

利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。

五、课堂总结

帕斯卡法是国著名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!

帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

《三角形内角和》教学设计 篇3

教学目标:

1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。

2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。

教学重点: 理解并掌握三角形的内角和是180°。

教学难点: 验证所有三角形的内角之和都是180°。

教具准备: 多媒体课件。

学具准备: 量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、导入

师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。

师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?

师:还有一个关键字“和”,什么是三角形的内角和?

师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?

师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?

生:量一量的方法。

师:光量就知道了?还要算一算。

师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。

验证:量角、求和

小组汇报

生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。

生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。

生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。

师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)

师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!

师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。

师:你们小组每个同学都动脑筋了,谢谢你们。

师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?

师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)

师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。

师:这几种方法都足以说明三角形的内角和是180度。(结论)

师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?

请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?

师:看来只要大家肯动脑筋,面对同一问题就会有不同的.解决方法。

师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?

生:能。

二、迁移和应用

(一)点将台:

下面哪三个角是同一个三角形的内角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我会算

1、已知∠1,∠2,∠3是三角形的三个内角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的两个锐角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一个底角是70°,它的顶角是多少度?

(三)。变变变!

(1)一个三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?

(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?

三、全课小结

师:通过一节课的探索,你有什么收获?

生答(略)

我的几点认识:

结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。

空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:

1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。

在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?

你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,

立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。

2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。

在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。

总之,在教学空间与图形的内容时,一定要让学生看到“图形",让学生想象"空间”。

《三角形内角和》教学设计 篇4

教学内容:

北师版小学数学四年级下册《探索与发现(一)—三角形内角和》

教材分析:

《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

学情分析:

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的'基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

教学目标:

1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学重点:

让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

教学难点:

掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:

表格、课件。

学具准备:

各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、复习

提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

2、引入

三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

播放课件,提问:它们在争论什么?

什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

(二)探索与发现

1、初步探索,提出猜想。

(1)量一量

①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②、小组合作。

③、汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在1800,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

2、动手操作,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)、小组合作,讨论验证方法。

(2)分组汇报,讨论质疑

学生可能会出现的方法:

A、撕拼的方法

把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

B、折一折的方法

把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

C提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)课件演示:两种方法的展示。

(2)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生一定会高兴地喊:“1800!

(3)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(4)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

(三)、回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800,。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°— 90°—30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°— 75°— 28°

3、小法官:数学书29页第二题

4、拓展创新

A D G

B C E F H R

ABC的内角和是()

DEF的内角和是()

GHR的内角和呢?

小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

三角形内角和等于1800。

猜想验证得出结论应用

《三角形内角和》教学设计 篇5

教学目标:

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

教学重点:

探索发现三角形内角和等于180并能应用。

教学难点:

三角形内角和是180的探索和验证。

教学过程:

一、创设情境,提出问题

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)

师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

生:每个三角形的内角和都是180吗?

(根据学生的问题,在三角形的内角和是180后面加上一个?)

二、自主探索,实践验证

1、理解内角 师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

师:那三角形的内角和又是指什么?

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证

师:每个三角形的内角和都是180吗?用什么方法来验证呢?

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

师:看来三角形的内角和不一定是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的`三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结

师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

三、巩固应用,加深理解

1、说一说每个三角形的内角和是多少度

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生: 180

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180

师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180

2、求下面各角的度数

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)

生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

生:用180-90-35,C =55。

生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

生:第三个三角形中,用180-20-45,B=115。

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

生:等腰三角形的两个底角相等,所以用180-70-70 4、

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

生:用量角器量一量

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:我知道了三角形的内角和是180。

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

《三角形内角和》教学设计 篇6

一、教学目标

1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

二、教学过程

(一)创设情境,导入新课

1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

(学生畅所欲言。)

2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

(二)自主探究,发现规律

1、认识什么是三角形的内角和。

师:你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让学生想一想、说一说怎样才能知道三角形的内角和?

学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

②小组合作。

通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

引导学生推测出三角形的内角和可能都是180°。

3、验证推测。

让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,教师参与其中。)

4、全班交流,共同发现规律。

当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

(三)巩固练习,拓展应用

根据发现的三角形的新知识来解决问题。

1、完成“试一试”

让学生独立完成后,集体交流。

2、游戏:选度数,组三角形。

请选出三个角的度数来组成一个三角形。

150°10°15°18°20°32°

35°50°52°54°56°58°

130°70°72°75°60°

学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

3、“想想做做”第1题

生独立完成,集体订正,并说说解题方法。

4、“想想做做”第2题

提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

5、“想想做做”第3题

生动手折折看,填空。

提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

6、“想想做做”第5题

生独立完成,说说不同的解题方法。

7、“想想做做”第6题

学生说说自己的想法。

8、思考题

教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

出四边形的内角和公式吗?

(四)课堂总结

本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

三教后反思:

“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的`度数和等于180度。

2、已知三角形两个角的度数,会求出第三个角的度数。

本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

(一)创设情景,激发兴趣

俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

(二)给学生空间,让他们自主探究

“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

(三)以学定教,注重教学的有效性

新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。<