数学比的意义教案
此篇文章数学比的意义教案(精选6篇),由智远网整理,希望能够帮助得到大家。
数学比的意义教案 篇1
教学目标
1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括
4.强调第三组题中两种相关联的'量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽
4.修一条路,已修的米数和剩下的米数.
四、课堂总结
今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.
五、课后作业
(一)判断下面每题中的两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.长方形的宽一定,它的面积和长.
(二)判断下面每题中的两种量是不是成反比例,并说明理由.
1.煤的总量一定,每天的烧煤量和能够烧的天数.
2.种子的总量一定,每公顷的播种量和播种的公顷数.
3.李叔叔从家到工厂,骑自行车的速度和所需时间.
4.华容做12道数学题,做完的题和没有做的题.
六、板书设计
数学比的意义教案 篇2
教学目标
1、使学生在已初步认识分数的基础上,进一步理解分数的意义。
2、弄清分子、分母、分数单位的含义。
3、掌握分数的读、写方法,培养学生的抽象、概括能力。
教学重点
理解和掌握分数的意义。
教学难点
抽象概括出分数的意义。
教学过程
一、讲授新课。
(一)分数的'产生。
1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?
2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?
(板书课题:分数的意义)
(二)分数的意义。
1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?
(依次出现糕点图、正方形图、1米长的线段图)
2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。
出示图片“苹果图”
教师提问:这幅图把什么看作一个整体?
把它平均分成了几份?
每份是几个苹果?
每份苹果是这个整体的几分之几?
(边讨论边板书)
出示图片“熊猫图”
教师提问:这幅图把什么看作一个整体?
把它平均分成了几份?
每份是几只熊猫玩具?每份是这个整体的几分之几?
4只熊猫玩具是其中的几份?是这个整体的几分之几?
(边讨论边板书)
3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?
明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。
(板书:单位“1” 若干份 一份或者几份 分数)
4、总结、归纳分数的意义。
根据上面的例子,谁能说一说,什么样的数叫做分数?
数学比的意义教案 篇3
教学内容
p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点
在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的'最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
课后小记
这节课学生在课堂上的反应是热烈的,但在作业中,发现似是而非的错误较多。特别是在温度计上找零下几度,不是正好的刻度时,容易找错区间,需要加强指导。
数学比的意义教案 篇4
教学内容:
小数的意义P32P33
教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数分别表示十分之几、百分之几、千分之几
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的.兴趣,增强热爱数学的情感。
教学重点:
理解小数的意义。
教学难点:
会用小数表示计量单位换算的结果。
教学准备:
多媒体课件、米尺。
教学过程:
一、导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按整米数和非整米数两类板书)
师:这些不够整米数的部分,如果仍然要用米作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
板书:小数的意义。
二、探索发现
1、认识一位小数。
(1)课件出示教材第32页例1米尺图。
把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:十分之一米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米
(2)观察上面的等式你能发现分数和小数之间的联系吗?
数学比的意义教案 篇5
教学内容:
人教版课程标准实验教材小学数学五年级下册
教学目标:
1、让学生在分一分、画一画、写一写、折一折、涂一涂体验中理解单位”1”,感受什么是分数,进而理解分数的意义,培养学生实际操作能力和抽象概括能力。
2、让学生在轻松和谐的氛围中主动参与、积极合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣和树立学好数学的信心。
教学重点:单位“1”和分数的意义的教学。
教学难点:突破一个整体的教学。
教学具:多媒体课件、纸片、一分米、方块、小棒、小刀、水彩笔。 教学过程:
一、 激趣引入:
师:板书数字1。这是几?表示什么?能具体说说可以表示1个什么吗? 学生回答(1个苹果、一张白纸、一根绳子、一个学校的全体学生??) 师:老师想问大家一个非常简单的问题,1+1=?(点击课件)可能等于1吗?(点击课件)
师:一吨煤+一吨煤=一堆煤 (点击课件)
7个苹果+8个苹果=? (点击课件)
师:这个简单而又神奇的1有如此丰富的意义,老师可以给它加上引号,起名叫作单位“1”。
师:取出学具袋,倒出其中的学具,分一分、说一说,哪些能用单位“1”表示?
【设计意图:开门见山教学单位“1”,突出“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,单刀直入式的导入无疑是本课亮点之一,不仅大大提高了教学效率,有效突破了教学难点,其分一分、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲。】
二、课题揭示
师:板书“分”字,问这是什么字?
师:分过东西吗?你是怎样分的,能举例说明吗?
生:??
师:他这样分叫做什么分?板书:平均分
师:以前学过的数学知识中,什么和平均分有关?
生:分数(板书)。
师:你对分数了解有多少?
生:??
师:这节课我们进一步学习分数。板书课题:分数的意义
让读课题后,问学生意义指什么?
分数起源于分,分数在我们的生活中应用非常广泛。(点击课件介绍分数的产生)
三、探索新知:
(一)回顾旧知:
师:用以前所学的分数的知识,分你手中的单位“1”,你能得到哪些分数?
学生操作,组内交流,各组推荐汇报。以1/4为例说明。
教师提醒学生注意倾听别人的意见,对不准确的地方要加以修正,尤其要强调“平均分”,尽量做到不要重复别人的发言内容。
【设计意图:把学习的主动权真正交给了学生,教师将几种学具材料交给学生,让学生通过小组合作的方式操作用分数表示,既尊重了学生的已有知识储备,又在不知不觉中为新知的构建架设桥梁。】
(二)、研究几分之一
师:你们想研究别的分数吗?教师出示1/○
师:这是分数吗?你会读吗?它有什么特别之处?
师:请大家拿出12根小棒,分一分、说一说,看看可以有多少种不同
方法来表示1/○ ?
学生操作,小组讨论、交流,教师巡视,引导学生用不同的方式表示。 学生汇报,教师板书1/2 →6根、1/3 →4根、1/4 →3根、1/6 →2根、1/12 →1根。
师:你又发现了什么?
师:同学们真了不起,发现了这么多知识!
【设计意图:富有挑战性的问题犹如一枚枚石子投进蓄势已久的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作,足以让学生获得积极的、深层次的体验。】
(三)、研究几分之几
1、教师出示○/○
师:猜猜看,老师想让你干什么?
教师出示要求:
分一分(选择合适的学具表示这个分数)
画一画(用简单的图形来表示这个分数)
折一折、涂一涂(选择合适的学具,用折叠、涂色的方法表示这个分数) 说一说(组内互相说说这个分数)
学生动手操作、组内交流,教师巡视指导。
2、各组推荐学生汇报??
【设计意图:遵循小学生数学学习的心理规律,问题设计得精且极具开放性、挑战性,以丰富的操作实践刺激学生的多种感官,注重学生感性认识,学生真正在“做数学”。】
四:阅读教材:
1、师:关于分数的知识,以前我们学习过一些,在课前我们也通过自学课本、查阅资料、请教别人,你现在知道多少分数的知识,能告诉老师吗?
学生回答??
2、师:让我们看看数学书上专家是怎样说的?
学生看书、圈划、摘读,组内交流。
3、师:什么是分数单位?我们刚才研究了吗?3/5 的分数单位是什么?有几个? 7/12 、11/20 呢?
【设计意图:注重对学生学习方法的熏陶。在设计时,注意到学生自我获取信息能力以及良好学习习惯的培养,让学生课前自学课本、查阅资料、请教别人,了解分数的有关知识,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为学生的终身发展打下坚实的基础。】
五、 综合应用
1、完成课本第62页做一做。
2、填一填:
(1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。
(2)这两位同学是( )人数的几分之几?
3、糖块游戏。
拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?
4、写分数游戏
师:下面请同学们练习写分数,比一比谁写得规范好看?任务是8个。 学生在写分数的过程中教师突然叫停。
师:数一数,你写了几个分数?你能用刚学的分数说一句话,让大家猜一猜你完成的情况吗?
生:我写了??
【设计意图:学以致用,在应用中赋予数学活力与灵性,让学生在生动活泼的数学学习活动感受到数学与生活的紧密联系。所谓“人人学有价值的数学”、“不同的人在数学上得到不同的发展。”】
六、全课小结:
师:对于分数的意义你还有什么不懂的可以提问。
学生质疑,学生解答,教师补充。
师:关于分数的知识你掌握的情况如何,你能用今天学习的分数的知识
说一说吗?
生:??
本课设计特色:
1、淡化形式,注重实质
分数的意义对于小学生来讲是一个比较抽象的概念,本课设计淡化形式,注重实质,一切以学生的发展为本,以解决问题为中心,以引导学生发现问题、分析问题、解决问题的.逻辑性来体现教学的严谨性。整节课教师都没有将“把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数”这句严密、枯燥、抽象的话语塞给学生,但是整节课彻头彻尾都紧扣“分数的意义”教学的重点和难点,苦心经营,匠心运作。
2、源于生活,回归生活。
小学生学习的数学应是生活中的数学,是学生“自己的数学”,同时数学又必须回归于生活,数学只有在生活中才能赋予活力与灵性。本课设计注意到数学的教与学紧密联系生活,帮助学生在生活中发现意义,注重现实体验,力避传统的“书本中学数学”,体现生活中教学相长的互动关系,大胆改革教材的例题呈现方式,“跳出教材教数学”。
3、强调合作,知识增殖。
本课设计做到把学习的主动权交给学生,多给学生思考和表现的机会,多些成功的体验,突出每个个体的作用,使每一个学生不仅对自己的学习负责,形成人人教我,我教人人,让学生在主动参与合作中完成任务,实现知识在交流中增殖,思维在交流中碰撞,情感在交流中融通。
4、注重体验,培植兴趣。
学生学习的不只是“文本课程”,而更是“体验课程”,“学生的数学学习内容应当是现实的、有趣的、富有挑战性的”。本课教学中的说一说、分一分、画一画、写一写、折一折、涂一涂为学生提供了高频率、多维度、深层面的体验,我们的学生在学习时感到了乐趣,体验到了成就感,激励他们进行更深入的学习与研究。
数学比的意义教案 篇6
一、复习导入
1、根据分数与除法的关系填空。
被除数÷除数说说:分数与除法的关系。
2、提问:80÷20的商是多少?
被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?
回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)
(商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)
二、新课
1、动手做数学。
(1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。
(涂上阴影)
(2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?
(3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。
2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?
(1)观察并研究分子、分母是按什么规律变化的?
1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。
(2)学生发现并归纳得出的规律(揭示:分数的基本性质):
分数的分子和分母同时乘以或者除以相同的数分数的.大小不变。
(3)理解意义。
提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?
先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)
将分数的基本性质补充完整。
3、应用性质、解决问题。
(1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。
(2)把3/4和15/24化成分母是8而大小不变的分数。
要求:独立思考解答、交流方法
(3)师生一起总结方法:
看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。
(4)独立完成练一练。
重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。
变化的依据是分数的基本性质
(5)口答练习十八第2题并说明判断的依据。
4、全课总结:你能将这节课的内容及重点归纳概括一下吗?
5、作业:完成练习十四
理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。
三、难点点拨
在运用分数的基本性质时,会出现以下几种错误:
①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。
②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。
在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。
③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的
返回首页