返回首页
智远网 > 短文 > 教案 > 正文

《长方体和正方体的表面积》教学设计

2025/11/27教案

此篇文章《长方体和正方体的表面积》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《长方体和正方体的表面积》教学设计 篇1

[通用]《长方体和正方体的表面积》教学设计

作为一位无私奉献的人民教师,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。那么问题来了,教学设计应该怎么写?以下是小编整理的《长方体和正方体的表面积》教学设计,仅供参考,大家一起来看看吧。

《长方体和正方体的表面积》教学设计 篇2

【教学内容】西师版第十册第39页例1。

【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。

2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

4让学生体会所学知识在实际中的应用价值。

【教学重点】

长方体、正方体表面积的计算方法。

【教学难点】

确定长方体每一个面的长和宽。

【教具学具】

教具:长方体、正方体纸盒(可展开)。

学具:长方体、正方体纸盒、剪刀。

【教学过程】

一、复习引入

师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?

出示一个长方体,指名摸它的表面。

师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。

二、探究学习

1探索长方体表面积的计算方法

出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?

4人小组合作完成这个长方体表面积的计算。

汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面

师:你能把这种求表面积的方法归纳一下吗?

生:长×宽×2+长×高×2+宽×高×2。

生2:我们组是把6个面的面积分别算出来后再相加。

生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。

师:为什么求出这3个面的面积和,再乘2就可以了?

生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

师:你能把这种求表面积的方法归纳一下吗?

生:(长×宽+长×高+宽×高)×2。(师板书)

师:观察真仔细,归纳能力真强。

师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。

2探索正方体表面积的`计算方法

师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?

出示一个正方体,让学生自主探索方法。

汇报交流。

生1:我是把6个面的面积加起来。

生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。

生3:我觉得只要求出一个面的面积再乘6就可以了。

师:能给大家讲讲你的想法吗?

生:正方体6个面的面积都是相同的。

师:你能把这种求表面积的方法归纳一下吗?

生:正方体的表面积=棱长×棱长×6。(师板书)

三、巩固练习

1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。

2练习十第3题。先独立完成,再与同桌交流自己的算法。

四、课堂小结

通过这节课的讨论学习,你有什么收获和体会?

《长方体和正方体的表面积》教学设计 篇3

教学内容:

长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)

教学目标:

① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。

② 会用求长方体表面积的方法解决生活中的简单问题。

③ 培养学生的分析能力,同时发展他们的空间观念。

教学重点:长方体表面积的计算方法。

教学难点:长方体表面积的计算方法。

教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:

一、预习提纲:

1、预习教材第33~34页例题1。

2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。

3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。

4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?

5、练习:

观察下面纸箱

二、展示汇报:

1、什么是长方体的长、宽、高?长方形的面积怎么计算?

2、交流汇报。

(1)通过预习,我们已经观察了一个长方体的`纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:

A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。

B、 每个面的长和宽与长方体的长和宽有什么关系?

3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。

学生齐读概念后,教师板书课题:长方体和正方体的表面积。

(1)下面这个纸盒的表面积要怎么求呢?

前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m

左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m

这个包装箱的表面积是:

0.7×0.5×2+0.7×0.4×2+0.5×0.4×2

=0.35×2+0.28×2+0.2×2

=0.7+0.56+0.4

=1.66m

或者:

(0.7×0.5+0.7×0.4+0.5×0.4)×2

=(0.35+0.28+0.2)×2

=0.83×2

=1.66 m 答:至少要用1.66 m 硬纸板。

(2)比较上面两种解法有什么不同?它们之间有什么联系?

三、课堂小结。

1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

2、你发现长方体表面积的计算方法了吗?

结论: = 长×宽×2+长×高×2+宽×高×2

长方体的表面积

= (长×宽+长×高+宽×高)×2

3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

四、巩固练习。

完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?

五、检测、反馈:

(一)完成P36练习六T1~3。

2、选择:

(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。

A、 2×7×2+6×7×2+6×2

B、(2×7+2×6+6×7)×2

C、2×7+2×6+6×7

3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)

A、(1×1+1×3+1×3)×2

B、1×1×2+1×3×4

C、1×1×2+1×4×3

讨论得出:底面周长×高=4个侧面的面积

4、思考题:

我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?

板书设计:

长方体和正方体的表面积的概念

= 长×宽×2+长×高×2+宽×高×2

长方体的表面积

= (长×宽+长×高+宽×高)×2

课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。

《长方体和正方体的表面积》教学设计 篇4

教学目标:

1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。

2、进一步发展学生的空间观念和空间想象能力。

3、密切数学与生活的联系,提高学生学习数学的学习兴趣。

教学重、难点:

能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。

教学准备:

多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。

教学过程:

一、复习长方体和正方体的特征

师:长方体有什么特征?

(长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)

正方体呢?

(正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)

师最后根据学生的口答小结。

二、复习长方体和正方体的表面积的计算方法

1、复习长方体每个面的面积的计算方法。

提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?

学生口答,课件及时反馈。

2、复习长方体和正方体表面积、底面积和侧面积的计算方法。

课件依次出示长方体和正方体,逐个提问。课件及时反馈。

3、求长方体和正方体的表面积(只列式不计算)。

第一个是长方体,6个面都是长方形;

第二个是长方体,有2个面是正方形,其余4个面是长方形;

第三个是正方体。

先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。

三、复习长方体和正方体表面积的实际应用

1、长方体和正方体表面积的实际应用的'基础练习。

(1)出示一组物体的图片。

师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。

(2)计算无盖的长方体玻璃鱼缸的玻璃面积。

先审题:要求玻璃面积,实际是求长方体哪几个面的面积?

再口答算式,并计算。

(3)计算火柴盒内盒和外盒的面积。

先独立思考,再集体交流。

根据学生口答板书:

火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)

火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)

(4)选择题

(1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()

A、0、2×2、5×50

B、0、2×0、2×2、5×50

C、0、2×2、5×4×50

还可以怎样计算?

展示长方体通风管展开成一个长方形的过程,帮助学生思考。

还可以列式为:0、2×4×2、5×50

(2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()

A、20×10+(20×2+10×2)×2

B、20×10+20×2+10×2

C、(20×10+20×2+10×2)×2

(3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。

A、减少了

B、不变

C、增加了

(4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。

A、6B、48C、24

(5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。

A、3B、6C、9

(6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。

A、1B、2C、3

2、拓展练习。

(1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?

(2)设计包装纸。

a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?

b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?

3、思考题。

下图表示用棱长1厘米的正方体摆成的物体。(书第18页)

(1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。

(2)这个物体的表面积是多少平方厘米?

(3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?

四、课堂作业

1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。

(1)8级台阶一共占地多少平方米?

(2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?

2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。

(1)粉刷的面积是多少平方米?

(2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?

《长方体和正方体的表面积》教学设计 篇5

教学目标

1、通过操作观察,使学生知道长方体和正方体表面积的含义、

2、初步学会长方体和正方体表面积的计算方法、

3、培养学生的动手操作能力和空间观念、

教学重点

建立表面积概念,初步学会计算长方体和正方体的表面积、

教学难点

正确建立表面积的概念、

教学步骤

一、铺垫孕伏、

1、长方体的特征是什么?

2、正方体的特征是什么?

指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知、

导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、

教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)

师:那么怎样求这6个面的面积呢?

拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。

师:老师发现同学们观察的真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?

老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)

同学们说的真好。你能把下面表格填上吗?看谁又快又对。

师:长方体6个面的面积和又叫长方体的表面积。

那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)

正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示

什么叫表面积呢?

1、教师明确:长方体或正方体六个面的'总面积叫做它的表面积、

2、学生两人一组相互说一说什么是长方体的表面积、

(二)长方体表面积的计算方法、【演示课件“长方体的表面积”】

1、学生归纳:

上下两个面大小相等,面积用长方体的长乘宽;

前后两个面大小相等,面积用长方体的长乘高;

左右两个面大小相等面积用长方体的高乘宽、

2、教学例1、

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、

《长方体和正方体的表面积》教学设计 篇6

教学目标:

1、知识性目标:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。

2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。

3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

教具、学具准备:

长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。

教学设计理念:

学生作为学习的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学习能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学习和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由近及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴近,在一定程度上能够调动儿童参与活动的积极性。

教学过程:

一、创设活动情景,复习导入

1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!

2、小组合作,利用长、正方形纸板动手制作长方体纸盒。

3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。

生1:长方体有6个面、12条棱、8个顶点。

生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。

生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。

生4:拿着长方体指出它的长、宽、高。

师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)

简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学习数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学习新知作了铺垫,使学生顺利进入下个环节的学习。

二、自主探究,合作交流

1、教学长方体、正方体表面积的概念

师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用上、下、左、右、前、后标明六个面。

师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?

生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。

师:有几组面积相等的长方形?

生:总共有三组面积相等的长方形。

师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)

师:展开后的每个面是什么形状的?有几个相等的面?

生:每个面是正方形的,有6个相等的面。

师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。 (板书课题:长方体和正方体的表面积、长方体表面积的计算)

简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学习计算长方体的表面积做好准备。

2、教学长方体、正方体表面积的计算

师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。

生合作探究计算方法,汇报如下:

生1:我们组列式是65+65+63+63+53+53,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。

生2:我们组列式为652+632+532。我用652求上下两个面的面积;用632求出前后两个面的面积;用532求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。

生3:我们组列式是(65+63+53)2。我用65求出上面;63求出前面;53求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。

生4:我们组列式是(5+3+5+3)6+532。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;532求的是左右两个面的面积。最后再求出它们的和。

生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:634+332,我用634求的是上下、前后四个面的面积;用332求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。

师:你们计算的'很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。

师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。

生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。

简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学习数学的兴趣,增强了合作和探求知识的意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。

三、巩固练习,深化理解

1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽、、、、、、)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。

2、生独立计算。

3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)

简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。

四、联系实际、学以致用

1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?

2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)

3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)

简析:数学学习,从理解知识到具体应用,解决实际问题,这是一次飞跃。本节课所设计的练习题都是学生熟悉的生活实际物品,灵活应用长方体和正方体表面积的意义和计算方法解题,让学生运用所学知识解决实际问题在应用中发展智能。体会到生活中处处有数学,还了数学的本来面目。

五、课堂总结

师:这节课你有什么收获?

简析:归纳本节课的基础知识和基本技能,总结交流学习方法,对知识的掌握及今后的学习相得益彰。

反思:

学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。