返回首页
智远网 > 短文 > 教案 > 正文

梯形的面积教学设计

2025/12/02教案

此篇文章梯形的面积教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

梯形的面积教学设计 篇1

教学目标

1.使学生在理解的基础上探索并掌握梯面积计算公式的推导过程,能利用公式求梯形的面积。

2.掌握转化的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点

梯形面积计算公式的推导和利用

教学难点

运用转化的方法探究梯形的面积计算公式

教学具准备

剪刀,一个梯形,方格纸

教学过程

一、复习欣赏、引入新课。

1.展示生活中的梯形,温故引新

师:这就是我们生活中的梯形。你能说出它各部分的名称吗?请你边说边用你的小手指一指.你还想知道什么?(出示课件)

生:面积

师:大家回忆一下,三角形的面积计算公式是什么?三角形的面积计算公式是怎么推导出来的?(ppt演示)

生:用两个完全一样的三角形拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形的高,三角形的面积是平行四边形面积的一半。沿三角形两边的中点剪开后拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形高的一半,所以三角形的面积是底乘高除以2。师:通过剪拼转化成我们学过的图形,找到他们之间的联系在推导。

2.出示课题

师:今天我们继续用转化的方法学习梯形的面积。(板书课题:梯形的面积)

师:谁知道梯形的面积公式?

生:梯形的面积=(上底+下底)×高÷2

师:如果用a、b、h分别表示梯形的上底、下底与高,用s表示梯形的面积,梯形的面积计算公式还可以怎么表示?

生:S梯形=(a+b)×h÷2

【设计意图】本环就展开想象,在兴趣盎然的状态中打开了思维,培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力,初步感知解决问题的途径和方法.

二、提供材料、动手操作、公式推导。

1.猜想梯形面积公式可能的推导过程

师:谁愿意猜一猜梯形面积的计算公式可能是怎样推导出来的?

生1:用两个完全一样的梯形拼成平行四边形

生2:把个梯形分割成两个三角形

生3:把一个梯形转化成三角形来推导

生4:把一个梯形转化成平行四边形来推导

师:同学们对梯形面积的计算公式推导作了大胆的猜想,但光有猜想是不够的,我们还要进行探索研究,通过事实来说明。

2.提供材料,探索研究

师:刚才同学们提到用两个完全一样的梯形拼成平行四边形推导,但老师今天只准备一个梯形怎么办?(课件出示图一)

生:画一个同样的梯形进行推导

师:请先想象一下,然后拿出材料画一画,再推导面积公式(学生研究,然后汇报并白板操作)生:两个完全一样的梯形拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,梯形的面积是平行四边形面积的一半。

师:“(上底+下底)×高”表示什么?求梯形的面积为什么还要除以2?

生:(上底+下底)×高求的是平行四边形的面积,用两个完全一样的梯形拼成平行四边形,除以2求的是梯形的面积。

师:通过刚才的学习,用两个完全相同的梯形拼成一个平行四边形确定能推导出梯形的面积计算公式,但是也有同学猜想用一个梯形也能转化成平行四边形、三角形、长方形来推导,你们觉得可以吗?

(2)用一个梯形推导梯形面积计算公式(学生再次研究,然后汇报并白板操作)

师:想办法把一个梯形剪或拼成平行四边形或三角形,再推导出面积公式。

生1:我们沿着梯形两腰中点的连线将梯形剪开(白板操作)转化成一个平行四边形。平行四边形的底等于梯形上底与下底的.和,平行四边形的高只有梯形高的一半,(上底+下底)×高÷2,求出的是这个平行四边形的面积,也就是梯形的面积。所以梯形的面积=(上底+下底)×高÷2。

师:上底与下底的和表示什么?高÷2又表示什么?

生:上底与下底的和表示平形四边形的底,高÷2表示平行四边形的高。

师:那位同学是转化成三角形来推导的?

生2:我们沿着梯形一个顶点和一条腰的中点分割下来,把它转化成三角形。三角形的底等于梯形的上底与下底的和,梯形的高等于三角形的高。所以梯形的面积=(上底+下底)×高÷2。(学生白板操作)师:你们是沿着腰上的任意一点进行分割的?

生:必须要沿着梯形一腰的中点与顶点的连线进行分割,剪下来才能拼成一个三角形。

师:上底与下底的和表示什么?

生:上底与下底的和表示三角形的底

生3:我们把梯形分割成两个三角形,方格纸中读出每个三角形的底和高,两个三角形面积和就是梯形的面积,再在方格纸中读出梯形上底,下底,高,从而推出梯形面积公式。

生4>我们把一个梯形分割成一个平行四边形和一个三角形进行推导,也能推出梯形面积公式。

师:刚才同学们用了不同的方法推导出梯形的面积公式,这说明同学们很会思考,其实推导梯形的面积公式还有其他方法,我们还可以在课后继续研究。

【设计意图】让学生动手操作在实验中不断发现问题,在同伴交流中拓展自己的思维,哦不满足于一种方法的公式推导。展示多种方法,开拓学生的思维,沟通多种方法之间的联系和区别。

三、联系实际、巩固运用

1.师:有了梯形面积计算公式,我们能不能计算这个梯形的面积?想办法计算出这个梯形的面积?

(学生白板工具栏中数学选直尺量出梯形的上底4.7厘米、下底13.5厘米、高8.5厘米,代入梯形面积计算公式计算出梯形的面积。)

2.师:梯形在我们日常生活中用途很广泛,这是我国最大的三峡水电站,

我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

【设计意图】本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。

四、课堂总结、畅谈收获。

本节课你学到了哪些知识?你有什么收获?(引导学生从知识和方法两方面进行总结)【设计意图】这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

板书设计:

梯形的面积

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

教学反思:

是在学生学习了平行四边形和三角形面积计算的基础上进行学习的。多数学生学习了平行四边形和三角形面积计算之后,会通过各种不同的渠道获取梯形面积的计算公式,但很少有学生会思考梯形面积计算公式是怎样推导出来的,学生经历了平行四边形和三角形的面积公式的推导过程的学习后,已经掌握了要把梯形转化为已知学过的图形进行推导。那么.用什么材料和方法引导学生进行探索呢?

一、一切从学生实际出发

新课表的核心理念是为了每一个学生的发展,但我们有多少时间是真正站在学生发展的角度去落实课堂教学呢?在我们的思维习惯中,往往会从整个数学知识体系去考虑教学,却很少从孩子发展的角度思考。学生已经具备了要把梯形转化为学过的图形进行推导的经验,是否就可以完全放手让学生应用已有的知识,经验主动学习新知识,从而学会学习呢?真正落实到课堂上,却并非易事。所以我把梯形的面积公式推导过程分为两个层次组织学生进行学习,先引导学生用两个完全相同的梯形进行推导,让全班所有的学生都掌握这种推导方法,再引导学生用一个梯形通过割补、分割等方法,把梯形转化成平行四边形、三角形等进行推导,根据推导方法的难易程度,在学习组织上安排了二人合作的形式进行这样的组织教学,层次清楚,每个环节目标明确,让每个学生更深刻地体验了转化的数学思想方法,数学思维能力得到提升。

二、画一画中经历面积的推导过程

在平时的动手操作课中,多数教师都觉得很麻烦,主要原因是制作学习材料繁琐,课堂教学调

控比较困难,很容易造成操作的低效现象,为追求学习材料的简洁,我没有制作一些梯形的纸片让学生学习研究,而且把纸片拼摆改成让学生自己画一画,同时考虑到学生画图是用尺子量,误差太大,速度很慢等缺点。采用方格图帮助学生理解,排出一些不必要的干扰因素,这样的学具准备一方面很方便,更重要的是让学生把研究的想法画出来,逼迫学生先进行想象,比直接让学生拼摆更具有挑战性,更有利于发展学生的空间观念。

三、在推导过程中发展空间观念和思维能力

推导梯形的面积公式主要不是让学生简单地拼一拼、摆一摆或剪一剪,而是让学生通过这样的动手操作推导出梯形的面积公式,培养学生的空间观念。本课教学让学生先想象,然后把拼摆过程画下来,画的过程就是学生想象的过程,发展学生的空间观念。尤其把一个梯形转化成平行四边形、三角形要求更高,这些转化过程必须经历学生的空间想象,白板的应用,让学生观察梯形的变化,即发展了学生的空间观念,又能很好地将梯形的面积公式与三角形、平行四边形的面积公式沟通起来,让学生感受到数学知识之间的内在联系,化抽象为具体,让学生理解的更深刻。

梯形的面积教学设计 篇2

【精】梯形的面积教学设计

作为一无名无私奉献的教育工作者,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。写教学设计需要注意哪些格式呢?以下是小编整理的梯形的面积教学设计,希望能够帮助到大家。

梯形的面积教学设计 篇3

一、教学目标

1、理解并会初步应用求曲边梯形面积的一般方法——“分割—近似代替—求和—取极限”;

2、经历求曲边梯形面积的过程,体验“以直代曲”和“无限逼近”的思想方法,感受数学中的转化与化归思想;

3、通过曲边梯形的面积这一实例,了解定积分的几何背景,借助几何直观体会定积分的基本思想。

二、学情分析

学生在本节课之前已经具备的认知基础有:

一是学生学习过通过割补的方法将不规则图形转化为若干规则图形来计算面积;

二是学生学习过数列求和的基本知识,学生也在课后思考中见过这个结论;

三是学生虽然未学习过极限的有关知识,但通过导数的学习,对极限有了初步的认识。学生在本节课学习中将会面临两个难点:

一是如何“以直代曲”,即学生如何将割圆术中“以直代曲,近似代替”的思想灵活地迁移到一般的曲边梯形上.具体说来就是:如何选择适当的直边图形(矩形、梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。

二是对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值。

教学重、难点

重点:探究求曲边梯形面积的方法。

难点:把“以直代曲”的'思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。

四、教学过程

为实现本节课的教学目标,突出重点,突破难点,根据“启发性原则”和“循序渐进原则”,我把教学过程设计为“问题引入,明确主题;类比探究,形成方法;特例应用,细化操作;一般推广,提炼本质”四个阶段.

(一)问题引入,明确主题

1.贴近生活引入农田,求抽象出的不规则图形面积来激发学生兴趣,让学生了解什么样的图形叫做曲边梯形?曲边梯形和直边图形的区别是什么?

2.让学生明确本节课的主题和研究方向:如何求曲边梯形的面积?能不能把曲边梯形面积问题转化成我们熟悉的直边图形面积问题?

(二)类比探究,形成方法

梯形的面积教学设计 篇4

【教学目标】

1.在实际情境中,认识计算梯形面积的必要性。

2.在自主探索活动中,经历推导梯形面积公式的过程。

3.能运用梯形面积的计算公式,解决相应的实际问题。

【教学重、难点】

教学重点:在自主探索中推导出梯形面积公式。

教学难点:能理解和运用梯形面积公式。

【教学准备】

尺子、两个完全相同的梯形纸片、ppt课件。

【教学过程】

一、创设情境,引出问题。

1.出示堤坝横截面,感受求梯形面积的必要性。

说一说:如何求出图中梯形的面积?

预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。

二、自主探索,解决问题。

1.把梯形转化成学过的.图形,并比较转化前后图形的面积。

(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

预设二:可以把梯形通过“割补”转化成一个平行四边形。

发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

2.怎样计算梯形的面积?

(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

(2)用字母表示梯形面积公式“S=(a+b)×h÷2”

(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”

3.师生小结。

三、练习应用,巩固提升。

1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

3.先测量,再计算下列图形的面积,并与同伴交流。

四、全课总结,强化延伸。

这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

梯形的面积教学设计 篇5

一、复习准备

1.复习旧知,铺垫引导

师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

生:转化成平行四边形。

(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

谈话:同学们对前面的知识掌握的真不错。

二、新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?

(学生思考片刻可能会回答:可以先转化为学过的图形)

师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

b.把你的方法与小组成员进行交流,共同验证。

C.选择合适的方法交流汇报。

2.自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3.全班汇报交流

师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

(学生边动手演示,边说转化过程。)

生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

(三)探索、归纳梯形的面积计算公式

师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

生:梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)高2

(教师板书梯形面积计算公式)

师:一个梯形的面积为什么要除以2?

生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:S=(a+b)h2

(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

三、联系实际,巩固运用

1.试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

(1)出示篮球场的罚球区图形,请计算出罚球区的面积。

(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2.练一练第1、2、3题,让学生独立完成。

3.思考题

我们经常见到圆木,钢管等堆成下图的形状,求图中圆木的总根数,你有几种解答方法?

四、课堂小结

师:通过今天的上课,谈谈你的收获。

案例分析:

动手实践、自主探索与合作交流是形计算教学的有效策略,是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:

1.学习策略的变化是本节课最突出的一个特点。如:在探索新知这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过动手实践小组内交流选择可行的'方法这样三个步骤,完成了转化和归纳的全过程。突出体现了学生是学习的主人这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。

2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。

不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:两个完全一样的梯形这一条件的重要性。

梯形的面积教学设计 篇6

一、教学目标

1、教学内容:九年义务教育课程标准实验教科书五年级第五单元《多边形面积》中的梯形的面积。

2、教材所处的地位及作用。

梯形的面积这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形的面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过的图形的方法。但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。学好这部分内容,为今后进一步学习圆的面积和立体图形的表面积垫好基础。

3、教学目标

各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习的方式,探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。因此,我们把本节课的教学目标定为以下几点:

(1) 探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积。

(2)使学生经历操作.观察.讨论.归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

(3) 让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

4、教材的重点与难点

根据本节课教材内容的特点以及教学目标的确定,我们把本节课的教学重点定为:理解并运用梯形的面积计算公式。

教学难点为:梯形面积公式的推导过程。

教学关键为:怎样把梯形转化为学过的`图形来推导出梯形的面积公式,找到转化后的图形与梯形各要素之间的关系。

二、教法学法指导

1、重视动手操作与实验

梯形的面积计算公式的推导是建立在学生剪,拼,摆的操作活动之上的。所以操作是本节课教学的重要环节。教师既要做好引导,又要学生在独立思考和合作交流的基础上进行操作。通过实际操作活动,发展学生的空间观念,培养动手操作能力。

2、引导学生探究,渗透“转化”思想。

“转化”是数学学习和研究的一种重要思想方法,本节课梯形的面积计算公式的推导就是采用了转化的方法。在本节课的教学中,应以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发形式设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作----转化-----推导的过程叙述出来,以发展学生的思维和表达能力。

3、注意培养学生用多种策略解决问题的意识和能力。

运用转化的方法-推导面积计算公式和计算多边形面积,可以有多种途径和方法,教师注意不要把学生的思维限制在一种固定或简单的途径或方法上,要尊重学生的想法。鼓励学生从不同-的途径和角度去思考和探索解决问题。

三、教学过程

梯形的面积是在学生已经学习了平行四边形和三角形面积计算的基础上学习的。由于有前面学习的基础,所以我们在设计这堂课时主要是采用提出问题----寻找思路—实验探究-----解决问题的步骤进行的。

㈠、复习回顾

在探究新课前,老师首先让学生回忆一下,平行四边形和三角形面积公式推导过程,并把推导过程制成课件,展示给学生,加以回顾。

(设计意图:这样复习回顾是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难了。)

㈡、提出问题,引出课题。

请同学们看这幅图片,小轿车玻璃是什么形状的?(课件出示课本第88页小轿车图片)你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这课你就 能解决这个问题了。板书课题:梯形的面积。

(设计意图:在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处的激发学生求知的欲望,使学生产生一种探求知识的动力。)

㈢、寻找思路,实验探究。

1、引导学生提出解决问题的方向。

我们在学习平行四边形和三角形面积时,采用了割补的方法,拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已经学过的图形推导出新的图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形面积转化为 我们学过的图形呢?

(设计意图:运用迁移规律,注意从旧到新,引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)

2、动手转化

小组活动一:

(1)梯形可以合理转化为什么图形?怎样转化?

(2)转换后的图形与梯形有什么联系?

小组合作交流,老师巡视指导。

全班汇报

学生可能出现的情况:

(设计意图:新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以在教学中,老师留给学生充分的时间,小组合作,鼓励做法多样。)

3、公式推导

小组活动二

现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?

小组交流一下,把你们组的发现或结论写下来。

全班交流自己的发现或结论。

归纳总结梯形面积计算方法。

梯形面积=(上底+下底)×高÷2为什么除以2呢?

(设计意图:在操作探究的基础上,教师引导学生自己来总结梯形面积的计算公式,通过这样设计,体现了让“学生自主探究,自主学习”的教学理念,满足了“学生希望自己是一个发现者,研究者,探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)

4、用字母表示梯形面积公式

㈣、应用公式解决问题。

1、我们已经推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!

课件出示例3的主题图

同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,它的横截面的一部分是梯形,现在我们要求这个横截面的面积,谁知道横截面是什么意思吗?

同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

订正时,请学生评价,重在理顺学生的解题思路。

(设计意图:通过动手操作,自主探究,学生获得了梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面的面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活中的实际问题。)

2、现在请同学们再来看这幅小轿车图片,现在你能计算这辆轿车的玻璃面积了吗?课件出示玻璃的数据,学生试做,二生板书。集体评价。

(设计意图:解决了前面导入新课提出的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

㈤、练习检测

1、填空。

两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于( ),拼成的平行四边形的高等于( ),梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。

(设计意图:理清学生的思路,规范学生的数学语言,培养学生思维的逻辑性。)

2、判断题。判断出对错并且说出原因,提高学生对新课的理解。

⑴、两个面积相等的梯形可以拼成一个平行四边形。( )

⑵、梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )

⑶梯形的面积等于平行四边形面积的一半。( )

⑷两个梯形面积相等,但形状不一定相同。( )

㈥、反思总结,拓展延伸。

1、学生谈收获,谈学习方法。

2、组内互评,这节课你最想表扬谁,为什么?(设计意图:通过全课的总结反思,促进认知结构的完善,使学生获得成功的体验.)