返回首页
智远网 > 短文 > 教案 > 正文

《循环小数》教学设计

2025/12/02教案

此篇文章《循环小数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《循环小数》教学设计 篇1

教学目标:

1.使学生初步认识循环小数、有限小数和无限小数,能用简便记法表示循环小数,能用循环小数表示除法的商,并能正确区分有限小数和无限小数。

2.让学生经历猜想、验证的探究过程,培养学生的探究精神和意识。

3.学生能在学习过程中获得成功体验,培养学生积极的数学情感。

教学内容:

教材第27~28页,练习五第1~5题。

教学准备:

多媒体课件,视频展示台。

教学过程:

一、创设情景,引入课题

师:我们这节课来探索一些有趣的规律。先听老师讲一个故事,看你能从这个故事中发现什么规律?

(教师讲故事:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,……)

生:这个故事总是在重复同一个内容。

师:不错!大家已经发现这个故事的一个特点了。

板书:不断重复

师:谁能根据这个特点接着老师的故事继续往下讲?

让几个学生继续讲这个重复的故事。

师:照这样讲下去,你发现这个故事还有一个什么特点?

引导学生讨论后回答:像这样重复下去,这个故事永远也讲不完。

随学生的回答板书:讲不完。

师:这种不断重复的现象不但故事中有,在有的计算中我们也会遇到。我们来看这样一个问题。

多媒体课件出示第27页王鹏赛跑的情景图。引导学生观察图意后,列出算式400÷75。

师:请同学们用竖式计算这个算式,看计算过程中你能发现什么?

学生计算,在计算过程中引导学生发现400÷75这个算式的两个特点:①余数重复出现“25”;②商的小数部分连续地重复出现“3”。

师:像这样继续除下去。能除完吗?

生:可能永远也除不完。

师:怎样表示这种永远也除不完的商?这种商有些什么特点,就是这节课我们要研究的问题,也是我们要认识的新朋友——循环小数。

板书课题:循环小数

二、认识循环小数

1.初步认识循环小数。

请一位学生把400÷75的竖式计算放到视频展示台上。

师:刚才我们发现了这个算式的三个特点,下面我们探讨一个问题,为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?

引导学生发现:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。

师:猜想一下,如果继续除下去,商会是多少?它的第4位商是多少?第5位呢?

学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现25,它的商也就重复出现3。

师:是这样的吗?我们可以接着往下除来看看。

学生验证略。

师:那么我们怎样表示400÷75的商呢?

引导学生说出:可以用省略号来表示永远除不尽的商。教师随学生的回答板书:400÷75=5.333…师:我们所说的重复也叫做循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就是循环小数。

2.进一步认识循环小数。

师:下面我们来继续研究循环小数,请同学们用竖式计算78??6÷11。

学生先独立计算,然后在小组内讨论,教师在视频展示台上出示写有讨论问题的卡片,如:

①这个算式能不能除尽?

②它的.商会不会循环?

③如果循环它是怎样循环的?

(学生计算、讨论、交流,大约控制在4分钟,然后组织全班汇报,学生的意见可能出现以下两种)

生1:我们小组认为这个算式不能除尽,但它的商不会循环。

师:为什么?

生1:因为它不像例1那样连续出现数字“3”。

生2:我们小组认为这里的商不能除尽,而且会循环。

师:说说你们这样猜测的原因?

生2:因为我发现有数字“4”和“5”的重复。

师:大家觉得他们的猜测正确吗?请你们(指生1)这组的同学继续除下去,看商的小数部分会不会重复出现4、5。

学生计算后证实会重复出现4、5。

师:比较5.333…和7.14545…,你觉得这两个循环小数有什么不同?

生:前一个循环小数是一个数字循环,后一个循环小数是两个数字循环。

师:请同学们用循环小数的方式标出这个算式的商。

指导学生写出78.6÷11=7.14545…

师:你觉得这样的算式除到哪一位就可以不除了呢?

指导学生说出,只要余数重复了,就可以不除了。

师:为什么?

引导学生说出:因为像这样的算式余数循环,商也会跟着循环。

师(指着5.333…,7.14545…):对了!像5.333…,7.14545…这样的小数都是循环小数。你能像这样写出几个循环小数吗?

学生写后,组织全班交流。

教师:观察这些循环小数,说说它们有什么共同之处?

引导学生观察、讨论后,指导学生说出:都是从小数部分的某一位起,都有一个数字或几个数字依次不断地重复出现。

三、学习用简便记法表示循环小数,认识有限小数和无限小数

师:能把这些循环小数中循环的数字用你喜欢的方式标出来吗?

学生自主活动,并让几名学生在黑板上的循环小数上进行标示。如:

5.3333… 7.14545…

教师边指边介绍:这些在小数部分依次不断地重复的一个或几个数字,可以用这样的方式把它写出来。如5.3333…可以写作,7.14545…可以写作。这就是用循环节表示循环小数,如果同学们对循环节有兴趣,可以看一看教材第28页的阅读材料。学生看书。

师:请同学们计算15÷16和1.5÷7。

学生计算后,问:从中你发现什么?

生:15÷16=0.9375,1.5÷7=0.2142857…

师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种情况,你知道是哪两种情况吗?

引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种情况是继续除下去,永远也除不完,像1.5÷7一样。

师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?

生:无限的。

师:所以循环小数是无限小数。请同学们写几个无限小数,再写几个有限小数。

学生写后,集体订正。

四、课堂小结

教师:今天你发现了哪些有趣的问题?通过今天的学习你有哪些收获?

学生回答略。

五、运用巩固

指导学生完成练习五第1~5题,对学有余力的学生,可以指导他们完成第6题。

《循环小数》教学设计 篇2

教材分析

循环小数是个新知识。这部分概念较多,又比较抽象,是教学的一个难点。教材通过例8,先让学生做除法。通过实际计算,发现这些除法无论除到小数点后面多少位,都除不尽。然后,教材中提出问题,让学生观察它们的商有什么特点,并想一想这是为什么。根据学生计算出的除法竖式,引导学生发现商和余数的关系。由于余数重复出现,商也重复出现,而且这样的重复是循环不断的。从而,引出循环小数的概念。接着,教材通过两个数相除时商的两种情况,介绍有限小数和无限小数的概念。以前学生对小数概念的认识仅限于有限小数。到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。最后,介绍循环节、纯循环小数和混循环小数等概念,这些都是选学内容。介绍循环小数的简便记法,说明当两个数相除不能除尽时,可以用循环小数表示商,小数的循环部分可以只写出第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。

学情分析

我们班的学生思维活跃,上课时还能够专心听讲,积极主动发言,善于提问。学生在生活中已感受过循环、重复的现象,也经历过将事物进行分类、整理的活动,具备了初步的比较、分类、归纳、概括等能力,为今天的学习打下了良好的基础。循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。以前学生对小数概念的`认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。

教学目标

知识技能目标:初步理解循环小数、有限小数、无限小数的意义,能正确地区分有限小数和无限小数,了解循环节的概念和循环小数的简便记法。

思维发展目标:经历循环小数的认识过程,体验探究发现的学习,培养发现问题、提出问题、解决问题的能力,提高观察、分析、比较、判断、抽象概括能力。

情感态度目标:感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心,初步渗透集合思想。

教学重点和难点

教学重点:通过笔算,发现循环小数的规律,掌握循环小数的意义。

教学难点:能正确判断循环节数字,用简便记法表示循环小数。

《循环小数》教学设计 篇3

教学目标:

知识与技能:

初步认识循环小数,能用计算器探索并指出一个循环小数的循环节。

过程与方法:

结合具体事例,经历竖式计算、观察、讨论并用计算器计算等,认识循环小数的过程。

情感态度价值观:在借助计算器进行数学探索的活动中,获得成功的体验,感受数学中蕴藏着许多的奥秘。

教学重点:

经历发现、了解循环小数的过程,了解循环小数的含义,能指出哪些商是循环小数。

教学难点:

循环小数的语言描述。

教学流程:

一、趣味故事导入主题

小故事——《讲不完的故事》。讲故事,说规律

【设计意图:从学生熟悉生活情景引出相关“循环”现象,使学生体会到生活中蕴含着丰富的数学知识,唤醒了学生的生活经验,激发学生的兴趣和学习信心。】

二、小组合作,探究新知

(一)小组尝试研究

1、竖式计算

6.21÷0.03=8.4÷0.56=

2、《循环小数》教学设计

1)试着列竖式进行计算。

2)在计算10÷3时,余数1不断的`重复出现,商中的3也不断的xx,商的位数是xx的。(填有限或无限)

在计算83÷11时,余数xx,商中xx。

3)用计算器计算

58.6÷1138.2÷2.7

我的发现:10÷3的商和83÷1158.6÷1138.2÷2.7的商的共同点是xx

【设计意图:设计尝试小研究我们必须关注学生的已有知识经验、体现出层次性,我们可以从学生旧有知识,充分发挥旧知识的迁移作用,为学生的解决尝试新知铺路搭桥。】

《循环小数》课上尝试小研究

1、用计算器计算

1÷9=2÷9=3÷9=4÷9=

我的发现:xx

2、不用计算,你能写出下面算式的的得数吗?用计算器进行验算。

5÷9=6÷9=7÷9=8÷9=

3、直接写出下面算式的得数?

10÷9=11÷9=12÷9=13÷9=

14÷9=15÷9=16÷9=17÷9=

(二)小组合作学习。

小组合作要求:

组长负责组织和分工,人人说一说自己的学习收获,在组内交流自学中不清晰的地方。发言要有顺序,当一人发言时其他成员要认真倾听。小组内解决不了的问题记下来,在班级展示时,交流解决。

【设计意图:小组合作探究的过程,拓宽了学生的参与面和开口面,通过每个学生思维的碰撞,逐渐将知识进行完善、系统化。同时抓住一些重点的内容引发学生的思考,同时发展学生的数学思维能力。】

(三)班级展示汇报。

1、同组内交流完了吗,哪个小组先来和大家一同分享你们的研究结果?

要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价。或者对他们的研究方法进行补充。

2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。

在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。

组长:哪个同学对我们小组的汇报有评价、补充或提出不懂的问题?

其他组的学生进行评价、补充、质疑。

(四)教师点拨提升。

1、教师适时点拨引领:

1)10÷3中余数1重复出现,所以商3不断重复出现;

2)循环小数是从小数的某一位起;循环小数是无限小数。

3)怎样确定商是循环小数呢?循环小数的表示方法。介绍循环节。

2、互相纠错,小组内同学互相检查尝试题做得是否正确,错误的加以改正。

【设计意图:班级展示提升是小组内形成统一的观点向全班同学展示交流并引发深入思考的过程,通过小组间思维碰撞,以及老师精彩的点拨引导,使教学重难点得以突破,使知识更加系统化,使学生将知识内化于心。】

三、挑战自我

一、请同学们判断下面哪几个数是循环小数,为什么?

0.9993.14159260.5477453.212121

5.027276.416416

二、判断

1、9.666是循环小数.

2、0.88保留三位小数是0.880

《循环小数》教学设计 篇4

苏教版国标本小学数学教材五年级上册第68、69页“小数和整数相乘”例1、“试一试”、“练一练”;练习十二第1~3题。

教材简析

本课教学内容是在学生已经学习了整数乘法的意义和计算方法、因数与积的变化规律、小数的意义和性质、小数加减法等知识的基础上学习的。在生活中学生也积累了一些小数乘法的初步经验。它是在整数乘法意义基础上的进一步扩展,同时,它既是小数乘法的重要组成部分, 也是小数四则混合运算学习的基础,为进一步学习和探索小数乘小数打下基础。

小数乘法对于学生来说有两点值得注意:一是小数乘法的竖式书写格式可能会受到小数加减法知识负迁移的影响;二是小数乘整数的算理学生可能会有个性化的解读,算法会出现多样化。以上学情的了解为确定教学目标、选定教学内容和组织教学过程提供了依据。在问题中探究、在活动中发现是本节课教学设计的指导思想。

教学目标

1.知识目标:使学生在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算,并能解决一些简单的实际问题。

2.能力目标:让学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养知识迁移和合情推理的能力。

3.情感目标:让学生体会生活与数学间的联系,感受数学活动的乐趣,增强学习数学的`信心。

教学重点

初步了解小数乘法的意义,掌握小数与整数相乘的计算方法。

教学难点

理解小数与整数相乘的算法及算理。

教学过程

一、创设情境、复习旧知

多媒体出示烈日炎炎的夏天,农民卖西瓜的场景。

师:夏天刚刚过去,在炎热的夏天我们最喜欢吃的水果是什么? (西瓜) 西瓜每千克8角,买3千克西瓜要多少角?

根据学生的回答板书:8×3=24 (角)

评析:创设具体的情境,密切联系生活,让学生在生活的情境中学习,有利于激发学生的学习需要和学习热情。因为小数乘整数是在整数乘法的基础上教学的,复习整数乘法为进一步开展教学做好准备。

二、转化单位、引入新课

师:在超市里,我们看到的商品标价都是以元为单位的,那么,8角= () 元。

如果把8角换成0.8元,怎么列式?

根据回答板书:0.8×3=

1. 比较:8×3=与0.8×3=这两个算式有什么不同? (0.8×3中有一个因数是小数)

2. 揭示课题:这就是我们今天要学习的小数乘整数。板书课题:小数乘整数。

评析:小学数学知识是一个整体,前后教学内容都有内在的必然联系,新知识往往是旧知识的延伸和补充。把8角转化为0.8元,目的是引出小数乘整数。学生列式0.8×3,进而比较0.8×3=与8×3=这两个算式,让学生从感性上认识小数乘整数,进而揭示课题。

三、学生试算、初步感知

1. 自主探索。

师:8×3我们会算了,那么0.8×3你会算吗?思考一下, 动笔算一算。

2. 合作交流。

师:你们是怎样算的?谁来跟大家交流一下?

(1) 用加法计算:0.8+0.8+0.8=2.4 (元)

(2) 0.8元=8角,8×3=24 (角) ,24角=2.4元,所以0.8×3=2.4 (元)

(3) 0.8看成8个十分之一,8个十分之一乘3就是24个十分之一,即2.4 (元) 。

(4) 用竖式计算:

师:列竖式计算时应该怎样列竖式呢?由第二种算法我们知道可以把小数乘法转化成整数乘法来计算。整数乘法列竖式时应该注意什么? (末位对齐) 所以3跟谁对齐比较合适? (边说边示范)

师:比较上面四种计算方法,你认为哪种方法最好?

小结:从同学们刚才交流算法的过程中,我们可以发现, 在计算小数乘整数的时候, 都是把它看做——整数乘整数。

3. 教学试一试。

师:随着农业生产技术的不断进步, 冬天我们也能吃到西瓜,我们一起来看看冬天的西瓜是怎么卖的。

冬天西瓜每千克2.35元, 买3千克西瓜要多少元? (先用加法计算, 再用乘法计算) 怎样解答呢?

根据回答板书:2.35×3=

(1) 独立试练。结果应该是多少呢?动笔算一算。

(2) 全班交流。突出用竖式计算。问:列竖式的时候要注意什么? (特别强调末位对齐)

4. 比较积与因数的小数位数。

师:我们来观察0.8×3=2.4与2.35×3=7.05这两个算式, 算式中的一个因数0.8是一位小数,积2.4也是一位小数,算式中的一个因数2.35是两位小数,积7.05也是两位小数。在积中点小数点, 你有什么想法?

小结:一位小数乘整数积是一位小数,两位小数乘整数积是两位小数。

猜想:三位小数乘整数, 积是几位小数?四位小数乘整数呢?

评析:教学时注意反馈学生的不同方法和想法,并组织学生交流互动,在互动对话中达成意义的理解和方法的习得。在呈现算法的多样化的同时,注意引导学生比较,, 在比较交流中学会选择,优化算法,培养学生思维的深刻性和正确性。

四、验证猜想、总结方法

1. 猜一猜。

先猜猜下面各题的积是几位小数, 再用计算器验证一下,看看结果与猜想是否一致。

2. 议一议。

通过刚才的计算和比较, 你发现了什么?你觉得应该怎样确定积的小数位数呢?

(1) 小组讨论。

(2) 全班交流。

小结:小数与整数相乘,因数中的小数是几位小数, 积就是几位小数。

3. 总结算法。

小数与整数相乘应该怎样算呢?你能总结一下计算方法吗?先在小组里互相说一说。

小数与整数相乘,先按整数乘法算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。

评析:引导学生通过观察、猜想、验证得出积与因数的小数位数关系,在此基础上总结出小数乘整数的计算方法。这里的设计, 既跳出了教材,又深化了教材,实现了在教学目标的导向下灵活处理教材的基本理念。

五、分层练习、巩固新知

1. 直接说出下面各题的积是几位小数。

让学生说出结果,并说说是怎样想的。

2. 根据148×23=3404,直接写出下面各题的积。

提问并让学生说说自己的思考过程。

拓展: () × () =34.04

3. 计算

学生齐练,请四名同学到黑板板演。

交流:0.18×5的积0.90是不是最简的?小数末尾有“0”的要进行化简。

指出:先在积里点上小数点,再化简。

4. 挑战自我, 冲刺极限

评析:本节课的练习设计充分体现因材施教、因人施教、分层施教的原则,从教材和学生的实际出发,根据教学内容的要求和学生的心理特点,有针对性地设计练习,充分考虑到学生差异的存在,在练习数量和质量的要求上做一些机动,使练习具有层次性,可以满足各层次学生的需要。

六、全课总结、深化新知

1. 这节课,我们学习了什么?你有哪些收获呢?

2. 如果小数乘100或者1000,我们又该怎样算呢?我们下节课再来研究。

《循环小数》教学设计 篇5

教学目标

1、会根据需要,求出商的近似值。

2、培养学生数感和灵活应用意识。

教学过程

一、基础练习

1、取P26,第10题,48÷2.3(保留一位小数)3.81÷7(保留两位小数)审题。求商的近似值的方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。

独立完成,请生板演。

二、巩固练习。

1、独立完成P2610剩余的题

2、独立完成P2611再全班交流,如何比较。

3、P2613学生独立完成全班交流。如何处理结果?

小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。

你还能提什么数学问题?教师板书。

三、发展练习

1、P26第12题

请学生说说是如何思考的?肯定多种策略解决问题。

2、教师根据日常教学情况进一步补充针对性的练习

教学内容:循环小数P27-P28

教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学过程

一、自主探索,获取新知

1、师谈活引入新课

我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

观察竖式,你发现了什么?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?(师板书)

3、总结概括循环小数的意义

出示:28÷1878.6÷11

先计算,再说一说这些商的特点。(请生板演计算结果)

学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?

0.999…52.52525…4.1677…3.212121…3.1415926…

学生评议。

5、介绍简便记法

如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师适时抛出有限小数,无限小数的'概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、学生小结

三、巩固练习

全班练习:19÷111.08÷3.313.25÷10.6报名板演,说出商是什么小数,依据是什么?

课后小记:

课题八:循环小数练习

教学内容:循环小数(二)P30

教学目的:

1、学生进一步巩固对循环小数概念的理解。

2、能比较两个(含)循环小数的大小。

学具准备:计算器

教学过程:

一、主动回顾,知识再现。上节课我们学习了什么知识?

二、单项训练,夯实基础。

1、进一步理解循环小数的概念。

完成P30.1

全班练,指名板演,哪些题的商是循环小数,如何判断的?

2、进一步掌握循环小数的写法,完成P30.2。

你如何表示商?(自己选择表示方法),全班交流校对。

3、求循环小数的近似值。完成P30.3。先请学生说说取近似值的方法,再让学生独立完成。

三、深化练习。完成P30.6先观察这些小数的特点,再试一试.

请学生说出判断大小的过程,教师适时评价。

1、想到把这些简便记法的循环小数还原。

2、2、1.23O1.233,只还原到第三位小数。

师小结:需要先观察,再比较,比较方法与以前比较小数的大小方法相同。

四、独立练习P3045

课题九:用计算器探索规律

教学内容:用计算器探索规律P29

教学目标:

1、能借助计算器探求简单的数学规律。

2、培养学生观察、归纳、概括、推理的数学能力。

3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。

教学过程:

一、激发学生兴趣

1、使用计算器,小组合作

任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?

2、小组汇报,展示过程,讨论发现。

《循环小数》教学设计 篇6

教学目标:

1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。

2、理解“有限小数”和“无限小数”的意义。

3、培养学生发现问题,提出问题,解决问题的能力,提高观察、分析、判断能力。

教学重、难点:

理解循环小数的意义

教学过程:

一、创设情境

1、理解依次重复出现的.意义。

从生活中出现的一些现象引入,比如今天是星期几,谁会说?接着说能说完吗?为什么?

引出:这种“依次不断重复”的情况称为“循环”(板书:循环)

2、初步感知循环小数。

出示教材第33页例7情境图,引导学生观察并说出图意,并找数学信息,独立列式:400÷75,让学生用竖式计算,并说一说在计算过程中你有什么发现。

发现:余数重复出现“25”;商的小数部分连续地重复出现“3”。

3、引出课题。

追问:像这样除下去,能除完吗?(不能)

板书:循环小数

二、互动新援

1、认识循环小数

引导学生思考:为什么商的小数部分总是重复出现“3”,这和每次出现的余数有什么关系?

(当余数重复出现时,商就要重复出现)

引导学生说出:400÷75的商可以用省略号表示永远除不尽的商。(板书:400÷75=5。333……)

2、出示第33页例8的两道计算题,让学生自主计算,并说说商的特点。

78.6÷11算到商的第三位小数时,让学生停一停,看看余数是多少,然后再接着除出两位小数,指导学生和除得的前几步,比较,想想继续除下去,商会是什么?

通过观察比较,引导学生发现:余数重复出现5和6,商会重复出现4和5总也除不尽。

3、比较上面三个算式的商,你有什么发现?

400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字。78.6÷11的商,从小数的第二位起不断地依次重复出现数字4和5。

师小结:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、引导学生自主学习。

(1)循环小数的概念。

(2)认识循环节,

如:5.333……的循环节是3;

7.14545……的循环节是45。

(3)循环小数的简便写法

如:5。333……写作5。

6.9258258……和6.9 5

三、巩固练习

1、完成“做一做”的第1题

学生自主完成,集体订正。

2、完成“做一做”的第2题。

想一想,两个数相除,如果不能得到整数商,所得的商会有哪些情况?引出有限小数和无限小数。

四、小结。

这节课你们学到了什么,有什么收获?