返回首页
智远网 > 短文 > 教案 > 正文

乘法运算定律教学设计

2025/12/08教案

此篇文章乘法运算定律教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

乘法运算定律教学设计 篇1

使用说明及学法指导:

1、结合问题自学课本第12页,用红笔勾画出疑惑点;独立思考完成书上填空,并发现理解简算方法。

2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。

学习目标:

1、使学生理解整数乘法的运算定律对于小数同样适用;

2、并会运用乘法的运算定律进行一些小数的简便计算。

3、在自主探究、合作学习中体验成长乐趣。

学习重点:乘法运算定律中数(包括整数和小数)的适用范围。

学习难点:运用乘法的运算定律进行小数乘法的的简便运算。

一、自主学习

任务:整数乘法运算定律推广到小数乘法的简便算法

1、想一想,我们学过哪些乘法运算定律?请用字母表示出来。

乘法交换律 ab=ba

乘法结合律 a(bc)=(ab)c

乘法分配律 a(b+c)=ab+ac

2、认真观察P.12三组中的'每两个算式,在书上填出左右两边的关系。

3、上面的算式,应用了哪些运算定律?

4、试着在书上完成例8,想一想,每一步应用了哪些运算定律?

5、练一练:P.12页的“做一做”。

任务:探究小数乘整数的计算方法(课内):

1、你会填吗?根据什么定律填的?

4.2×1.69=□×□

2.5×(0.77×0.4)=(□×□)×□

6.1×3.6+3.9×3.6=(□+□)×□

2、阅读教材第12页例8。理解:计算0.25×4.78×4时,先将4.78和4交换位置,计算出0.25×4的积后,将积与4.78相乘得4.78较简便。这是根据 ;065×(200+1)=0.65×200+0.65×1这是根据 。

3计算2.5×18时,先把18写成 + ,再根据乘法分配律得出2.5×18= × + × 。就得到2.5×18= 较简便。

3、简算:4.8×0.25 7.5×104 2.33×1.25×8

二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)

1、小数乘整数乘法的 ,对于小数乘 法 。

2、简算:

2.5×33×4 3.6×0.8+0.8×6.4

12.7×10.8-2.7×10.8

3、简算出35.62+35.62×99时,要注意把前一个35.62看成( )×( )

过关检测:

1、简算;

6×5.68+5.68×94 7.5×33×4 4.33×12.5×8

2、下面各题怎样算简便就怎样算

(9.275+0.725)×0.59 33.2-2.64×0.5 0.67×8.3+2.7×0.67-0.67

乘法运算定律教学设计 篇2

教学目标:

1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);

2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;

3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。

教学过程:

一、比赛激趣,引发猜想

1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!

2、教师报题,学生起立抢答。

3、大家的速度都很快,很难分出高下,下面换一种比赛形式。

(课件演示:一次性计算两道题,看谁算得既对又快。)

4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?

5、引导猜想:a、乘法中可能也有交换律和结合律;

b、猜想怎么用字母来表示它们。

{板书猜想结果:乘法交换律乘法结合律

二、合作探究,举例验证

1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?

请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)

质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)

那怎么办?需要凝聚大家的力量一起举例!

2、小组合作验证

3、归纳两条乘法运算定律的文字叙述内容,揭示课题。

三、学以致用,加强巩固

四、课堂小结,拓展延伸

本课的设计体现了以下几个特点:

1、创造性地运用教材,落实“三维”教学目标。

按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。

2、经历过程,强化体验,落实“三维”教学目标。

从猜想→验证→应用的`整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的渴望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的自主学习意识,而且学生的参与积极性也会高涨。

3、科学思想和方法的渗透,落实“三维”教学目标。

在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。

乘法运算定律教学设计 篇3

一、学习目标

1、初步体会整数的运算定律在小数中仍然适用。

2、能运用乘法运算定律使小数计算简便。

3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

二、复习铺垫

1、算一算

(1)5×2=(2)50×2=(3)500×2=(4)25×4=(5)250×4=

(6)25×40=(7)125×8=(8)125×80=(9)125×800=

2、乘法有哪些运算定律?怎样用字母式子表示?你能写下来吗?

乘法()律:()

乘法()律:()

乘法()律:()

3、用简便方法计算

125×25×825×15×462×38+38×38

25×(40+4)15×(20+3)95×71+95×29

三、自主探究

1、比一比,看谁算得又对又快!

0.7×1.2=(0.8×0.5)×0.4=(2.4+3.6)×0.5=

1.2×0.7=0.8×(0.5×0.4)=2.4×0.5+3.6×0.5=

由此我们可以推想:小数四则运算的顺序跟()的顺序是一样的。

2、观察每组的两个算式,它们有什么关系?

0.7×1.2○1.2×0.7(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

3、由此我们可以推想:

(1)整数乘法的()、()和(),对于()乘法也适用。

(2)应用乘法的运算定律,可以使一些小数乘法计算较()。

4、看一看、想一想、试一试,怎样简便就怎样算:

0.25×4.78×40.65×202

四、探究发现

比较刚才做的整数乘法的简便计算和小数乘法的简便计算,请同学们想一想整数乘法的简便计算和小数乘法的.简便计算有什么相同点和不同点?(可寻求家长和同学的帮助)

四、巩固测评

1、在□里填上适当的数。

25×(0.75×0.4)=□×(□×□)6.3×2.4+2.4×3.7=□×(□+□)

(8-0.8)×1.25=□×□-□×□

2、试着用简便方法计算

3.45×0.25×40.45×202

3、解决问题(怎样简便就怎样做)

食堂买茄子和西红柿各25千克,每千克茄子4.6元,每千克西红柿5.4元。买这两种蔬菜共用多少钱?

五、学习收获

通过探究学习,我的收获(体会)是

乘法运算定律教学设计 篇4

教学过程:

一、知识点的复习

回忆《乘法的运算定律》这一小节的学习内容。

教师引导回忆,并相应板书。

二、联系实际复习

1.学生汇报课前收集的有关乘法的运算定律的'相应知识。

2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。

教师把符合要求的题目贴上黑板。

学生根据前面的知识点的复习,进行题目的独立解答。

要求:选择自己喜欢的方法解答。

教师巡视,加以必要的指导。

有必要的题目可以让学生练习画线段图。

小组内交流。

全班汇报。

三、小结

学生谈收获

课后小结:

教学内容:

乘法运算定律的复习

教学目的:

1.引导学生能运用乘法运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

乘法运算定律教学设计 篇5

(荐)乘法运算定律教学设计15篇

作为一位无私奉献的人民教师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编为大家整理的乘法运算定律教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

乘法运算定律教学设计 篇6

知识目标:

通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

能力目标:

渗透从特殊到一般,再由一般到特殊这种认识事物的方法。培养学生观察、比较、抽象、概括等能力。培养学生的数感和符号感。

情感目标:

让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

教学重点:

引导学生通过观察、比较、抽象、概括出乘法分配律。

教学难点:

应用乘法分配律解决实际问题。

教学工具

课件

教学过程

(一)生活引入,感知规律

1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

3、爸爸和妈妈都爱我,这句话还可以怎样说?

4、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

(二)开放探究,建构规律

1、情境引入

讲本学期开学,学校要为

一、二、三年级更换桌椅情况:

(课件播放),提出问题,引发学生思考:

(1)请仔细观察大屏幕:

学校为一年级更换3套桌椅共需要多少钱?

学校为二年级更换5套桌椅共需要多少钱?

学校为三年级更换6套桌椅共需要多少钱?

(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

(4)谁愿意接着汇报?

2、第一次发现

(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

小结:每一组算式的结果相等。

(2)我把这两个算式用等号来连接,行吗?

板书:(50+60)×3 = 50×3+60×

3(75+68)×5 = 75×5+68×

5(80+65)×6 = 80×6+65×6

3、第二次发现

(1)再观察这三组算式,还有什么发现吗?

(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的`猜想进行验证呢?

(3)每人举出一个例子,写在纸上,然后请同桌帮助验证

汇报交流:像这样的例子还能举出一些吗?举的完吗?

4、归纳总结:

(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

(2)请看大屏幕,你们的意思是这样吗?小声读读。

(3)有什么不懂的词吗?

5、个性化理解

(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

根据学生回答教师板书:

(甲+乙)×丙=甲×丙+乙×丙

(a+b)×c=a×c+b×c

(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

(3)对于乘法分配律用字母表示感觉怎么样?

(三)激活联系、应用规律。

1、请你把相等的两个算式连线。

(8+13)×4 41×(3+27)

3×(21+6) 7×5 +8

41×3 +41×27 3×21 +3×6

7×(5+8) 8×4 +13×

4(1)你为什么连得这么快?是计算了吗?

(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

2、根据乘法分配律填空:

(83+17)×3=□×□○□×□

10×25+4×25=(□○□)×□

(1)谁愿意展示一下你填写的。有不同意见吗?

(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

3、联系旧知、同已有知识建立联系。

谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

(四)课堂小结:

今天,学习了乘法分配律,你有什么想法?

(五)板书设计:

乘法分配律

(50+60)×3 = 50×3+60×3

(75+68)×5 = 75×5+68×5

(80+65)×6 = 80×6+65×6

(a+b)×c = a×c+b×c