返回首页
智远网 > 短文 > 教案 > 正文

《循环小数》教学设计

2025/12/08教案

此篇文章《循环小数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《循环小数》教学设计 篇1

教学目标:

1、理解产生循环小数产生的原因,认识循环小数,能正确使用循环小数表示商;

2、认识循环节,能正确进行循环小数的简写;

3、在猜想、验证过程中清晰地表述自己的观点和理由,培养交流的意识与能力。

教学重点:

认识循环小数,能正确使用循环小数表示商;认识循环节,能正确进行循环小数的简写。

教学难点:

理解循环小数产生的原因,能正确进行竖式的简写。

教学过程:

一、提示矛盾,感知循环

1、男女生比赛计算:15.6÷127÷3

2、观察思考:观察这个竖式,你发现了什么?

(余数重复出现,商就跟着重复出现。感知有限、无限)

二、深入研究,认识循环

1、思考:这是一种偶然现象吗?还有没有这样的例子,请同学们尝试计算。

出示例8:先计算,再说一说这些商的特点。

28÷18=78.6÷11

2、概括循环小数的概念

1>观察这些算式的商,可以发现有什么共同点,有什么不同点?

感知:都是无限的;

都有一个或几个数字依次不断地重复出现。

2>提示概念:

像这样的'小数就叫循环小数。学生读课本,互相交流,在这个定义中应该注意哪些词语?你是怎样理解的?

出示:一个数的小数部分,从某一位起,一个或几个数字依次不断地重复出现,这样的小数叫循环小数。

3、判断:下面哪些小数是循环小数?为什么?

5.78780.555……3.83999……3.010010001……

5、提示循环节概念,掌握简便写法

1>学生自学教材第34页有关循环小数的知识,全班交流,理解认识:

A.循环节:一个循环小数的小数部分,仿效不断重复出现的数字,就是这个小数的循环节。

学生举例说明。

B.循环小数的简写:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个小圆点。

举例:如5.333……写作:5.3(五点三,三循环)

6.9258258……写作:6.9258(六点九二五八,二五八循环)

强调:只需要写出一个循环节,简便记法只在首位和末位点上小圆点。

C学生尝试从简便记法怎样到一般写法。

强调:循环节只写一遍

只在首位和末位点上小圆点。

D.逆向运用:从简便计法展开到一般写法。

2、回顾竖式,说一说除到哪一位就能判定循环节。

(当余数第二次重复出现时,就可以停止)

3、练习,列竖式。指导学生根据余数情况尽可能早地判定循环小数,并用简便写法记得数。

2.29÷1.123÷3.3

三、巩固练习

课本34页做一做1:用简便形式写出下面的循环小数;

37页第9题:比较小数的大小。

《循环小数》教学设计 篇2

教学目标:

①知识技能:通过学习与探究小数的循环现象,探索循环小数的循环规律。初步认识循环小数,知道循环小数的位数是无限的;

②过程与方法:经历讨论、交流的学习活动,培养学生的分类能力、分析能力和概括能力。

③情感与态度:体会数学来源于生活、服务于生活的思想,培养学生分析、处理问题的能力。

教学重难点:

理解和掌握循环小数等概念,这些概念应通过学生试算、观察、讨论、归纳得出。

教学过程:

(一)创设情境,感知概念。

1.拍节奏游戏:

师:(1)老师拍节奏,你们能拍出来吗?

(2)你们拍的节奏为什么这么整齐?

(3)如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,想一想,你们要拍多少次?

(4)像这样拍的次数是“有限的”还是“无限的”?

(5)你们刚才拍的次数呢?

2.找规律,猜图形。

多媒体出示:依次出现两个圆圈和一个三角形的图形。

当逐个出现至第十个图形,即第四组的第一个圆圈后,提问:

谁能猜到下面一个是什么图形呢?

你是怎样想出来呢?

出示第12个图形时,当学生猜出下面一个是三角形时,出现“......”这个省略号表示什么意思?

对的,也就是说,是依次不断地重复出现这样的`图形,请同学们想一想,这幅图中有多少组这样的图形呢?

学生说完后,教师板书(依次不断地重复出现,无限)

在实际生活中,还有那些现象是这样的?

一年有春夏秋冬,四季周而复始,每个星期有七天,每年有52个星期,开着的红绿灯,这些都是循环现象,其实,在数学王国里,就有一种小数,同学们想认识它吗?(想)这节课我们就来学习“循环小数”。板书课题,导入新课。

(二)展示过程 探究新知

1、循环小数

①组织学生自由选择下面各题,用竖式计算,并引导学生观察商的特点。

330÷1100 2÷6 1.23÷3

②自学例2 7.3 ÷2.2 除到商是五位小数时停止。

自学提示:(1)想一想,如果继续除下去,商会怎样?

(2)谁来猜一猜第6位小数是几?

(3)“等等”用什么符号来表示?能不能不用省略号?为什么?

③你能说说省略号表示什么?

2÷9=0.222…… 5÷12=0.4166……

9÷55=0.16363…… 2.4666…… 2.583583……

④你们还能举出这样的小数吗?

⑤概括并揭题。

像这些小数,就是我们今天要学习的“循环小数”。(板书课题)

谁来说一说什么叫“循环小数”?你们认为这句话里哪几个字比较重要?

⑥判断,请同学们判断哪几个数是循环小数,为什么?

0.999…… 5.02727…… 6.416416……

3.5656565656 3.1415926…… 0.123321……

2、循环节

“0.333……”中不断重复出现的数字是哪一个?在3.31818……数中,依次不断地重复出现的数字有个名称,请看书上第61页,什么叫循环节?请找出以上判断题中循环小数的循环节。

3、循环小数的简便记法

①记法和读法。

记法:把循环节写出两遍或三遍,是一种记法。简便记法:只写一个循环节,然后在循环节的首位和末尾数字上各记一个圆点,这个点叫循环节。

读法:5.327…… 五点三二七,二七循环。

② 练习。

(1)写出3.333……的简便写法。

(2)写出判断题中循环小数的简便写法。

(三)巩固强化,拓展思维。

1、判断题.

(1)9.6666是循环小数。 ( )

(2)循环小数是无限小数。( )

(3)循环小数57.575575……记作57.57 ( )

(4)32.3232是有限小数也是循环小数。 ( )

2、把下面的循环小数圈起来。

4.3737 5.28383…… 5.314162…… 0.7563563……

3.小结:

如果用这是个什么样的循环小数?

循环节是什么?可以简写成什么?学生板演.

(四)课堂总结,鼓励质疑。

通过这堂课的学习,你们有那些收获?还有那些疑问?

《循环小数》教学设计 篇3

教学目标:

1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。2.初步认识有限小数和无限小数。

3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数。教学准备:课件。教学过程:

一、创设情景

师:你们最喜欢什么季节?师:你喜欢的季节还会出现吗?师:四季的出现有什么规律?

师:像一年四季不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例

师:生活中有很多循环现象,数学中有没有这种现象呢?我们一起去找一找。(引出课题)

二、自主探究

(一)初步认识循环小数

1、先看算式1÷32、你说我写,看计算过程中你能发现什么?

3、师板书,在计算过程中引导学生发现1÷3这个算式的两个特点:1.余数重复出现“1”;2.商的小数部分连续的重复出现“3”。

4、师:像这样继续除下去能除完吗?

5、师:怎样表示这种个永远也除不完的商?这种商有些什么特点,就是我们今天要研究的问题,也是我们要认识的新朋友——循环小数

(二)自主探索循环小数

1.刚才我们已经发现了这个算式的特点,下面我们探讨一个问题,为什么上的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?

引导学生发现:当余数重复出现时,商就要重复出现:商是随余数重复出现才重复出现的。2.师:猜想一下,如果继续除下去,商会是多少?他的第四位商是多少,第五位呢?

学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现1,它的商也就重复出现3.师:是这样的吗?我们可以接着往下除来看看。验证。师:那么我们怎样表示1÷3的商呢?

引导学生说出可以用省略号来表示永远除不尽的商。

师:像5.333这样小数部分有一个数字依次不断重复出现的小数,就是循环小数。

(三)进一步认识循环小数。

师:下面我们来继续研究循环小数,请同学们用竖式计算78.6÷11学生先独立计算,教师课件出示:1.这个算式能不能除尽?2.它的商会不会循环?

3.如果循环它是怎样循环的?(学生计算,然后全班汇报)

师:你觉得这样的算式除到哪一位就可以不除了?指导学生说出,只要余数重复了,就可以不除了。师:为什么?

引导学生说出:因为像这样的算式余数循环,商也跟着循环。师:你能标出这个算式的商吗?

师:下面我们来继续研究循环小数,请同学们用竖式计算1.5÷7教师课件出示:

1.这个算式能不能除尽?2.它的商会不会循环?

3.如果循环它是怎样循环的?(学生计算、然后全班汇报)

师:比较0.333和7.14545,0.2142857142857你觉得这三个循环小数有什么不同?

师:像5.333,7.14545,0.2142857142857,这样的小数都是循环小数。你能说出几个循环小数吗?学生说,师板书。

师:观察这些循环小数,说说他们有什么共同之处?学生汇报教师点拨。

刚才同学们讲的都有一定的道理,下面我们看看书上的结论。学生自由朗读。

课件出示:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。▲辨析概念

1.读懂了吗?老师来检验一下你们理解的情况,出示:判断:

A、一个数,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。()B、一个数的小数部分,从某一位起,一个数字或者几个数字重复出现,这样的小数叫做循环小数。()2.通过刚才的判断,你认为概念中那些字是比较重要的,读出这几个字的重音,集体朗读一遍。请你判断下面那些数是循环小数,为什么?(课件)0.999…

5.02727…

6.306306…

3.212121

3.1415926…

0.547745…

四、自学“循环小数”的相应新知,并尝试应用。

(一)、认识有限小数和无限小数

师:3.212121不是循环小数,那它是什么数呢?板书:有限小数

师:在3.1415926和0.547745小数中,是不是循环小数呢?为什么?师:那这三个数是什么数呢?板书:无限不循环小数

课件出示:小数部分的.位数有限的小数是有限小数。小数部分的位数无限的小数是无限小数。请同学们说几个有限小数,再说几个无限小数。

(二)、认识循环节

一个循环小数的小数部分,依次不断重复出现的数字,有一个名字叫循环节。

课件出示:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。你们能写出下面三个循环小数的循环节吗?

0.999的循环节是()

5.02727的循环节是()

6.306306的循环节是()

(三)、循环小数的简写

1、我们认识了这么多的循环小数,你们认为写循环小数麻烦吗?

2、课本上为我们提供了一种简便的写法,大家想不想了解一下。

课件出示:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。学生自学

3、学会了循环小数简写的方法了吗?好!我们来试一试。把下面循环小数用简便方法写出来,并指导读的方法。7.44…

14.1414…

0.671671…

把循环小数的简便形式改写成一般形式,你会吗?

2.49=

7.518 =

42.512 =

六、巩固练习

一、下面的数中,哪些是循环小数?将它们表示用简便形式表示出来:0.3757…

0.417417…

1.66666…

5.7234242… 3.161616…

4.3737 1.1380413804…

0.50505…

二、判断题。(对的画“√”,错的画“×”)

①一个小数从某一位数起,一个或几个数字依次不断重复出现的小数叫做循环小数。()②0.666是循环小数。()③0.7777是循环小数。()

④1.306306=1.306。()

⑤9.219219,循环节是921。()⑥0.07是有限小数。()⑦循环小数是无限小数。()⑧无限小数是循环小数。()

三、根据实际需要,取它的近似数。

0.245

(保留两位小数)0.245

(保留三位小数)

四、比较下面两个数的大小。

0.33 〇

0.3

1.23 〇 1.233

1.45 〇 1.45

七、全课总结。

通过这节课的学习,你有什么收获?

思考题、如果用A、B、C表示不同的三个数字,如:A.BBCBBC可以简写成什么数?这个小数的小数部分第一百位是什么?

《循环小数》教学设计 篇4

一、教学内容:

教材第64页例。

“试一试”和“练一练”,完成练习十二第1-3题。

二、教学目标:

1、 使学生理解小数乘小数的意义,掌握小数乘小数的计算法则。

2、 能正确运用计算法则计算小数乘小数的乘法。

3、 培养学生的合作能力和迁移类推能力。

三、教学过程:

(一)预习案

1.复习。

0.52+0.48= 0.17+0.33= 3.6+6.4= 0.8×3= 3.7×5= 46×0.3=

2.回忆整数乘法的法则。

(二)导学案

1.教学例1。

(1)出示例1。

(2)提问:房间的面积有多大?先估计一下。 3.6×2.8≈( )

想:3×3=9,面积在9平方米左右。 4×3=12,面积在12平方米左右。

(3)提出:列竖式计算怎样算呢? 把这两个小数都看成整数,很快计结果。 相乘后怎样才能得到原来的积?

(4)学生讨论。

得出:两个因数分别乘十,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的.积是10.08。

2.试一试。

(1)提出:要求阳台的面积是多少平方米?怎样列式?2.8×1.15=( )

(2)计算2.8×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?

(3)得出:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.22。

3.小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)在小组里说说小数乘小数应该怎样计算。

(3)先按整数乘法算出积是多少。

看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固案

练一练。

(1)你能给下面各题的积点上小数点吗?

(2)计算下面的题。

3.46×1.2 1.8×4.5 10.4×2.5

(3)总结小数乘小数的法则。

(四)实践练习十二1到3题。

《循环小数》教学设计 篇5

教学目标:

知识与技能:

初步认识循环小数,能用计算器探索并指出一个循环小数的循环节。

过程与方法:

结合具体事例,经历竖式计算、观察、讨论并用计算器计算等,认识循环小数的过程。

情感态度价值观:在借助计算器进行数学探索的活动中,获得成功的体验,感受数学中蕴藏着许多的奥秘。

教学重点:

经历发现、了解循环小数的过程,了解循环小数的含义,能指出哪些商是循环小数。

教学难点:

循环小数的语言描述。

教学流程:

一、趣味故事导入主题

小故事——《讲不完的故事》。讲故事,说规律

【设计意图:从学生熟悉生活情景引出相关“循环”现象,使学生体会到生活中蕴含着丰富的数学知识,唤醒了学生的生活经验,激发学生的兴趣和学习信心。】

二、小组合作,探究新知

(一)小组尝试研究

1、竖式计算

6.21÷0.03=8.4÷0.56=

2、《循环小数》教学设计

1)试着列竖式进行计算。

2)在计算10÷3时,余数1不断的重复出现,商中的3也不断的xx,商的位数是xx的。(填有限或无限)

在计算83÷11时,余数xx,商中xx。

3)用计算器计算

58.6÷1138.2÷2.7

我的发现:10÷3的商和83÷1158.6÷1138.2÷2.7的商的共同点是xx

【设计意图:设计尝试小研究我们必须关注学生的已有知识经验、体现出层次性,我们可以从学生旧有知识,充分发挥旧知识的'迁移作用,为学生的解决尝试新知铺路搭桥。】

《循环小数》课上尝试小研究

1、用计算器计算

1÷9=2÷9=3÷9=4÷9=

我的发现:xx

2、不用计算,你能写出下面算式的的得数吗?用计算器进行验算。

5÷9=6÷9=7÷9=8÷9=

3、直接写出下面算式的得数?

10÷9=11÷9=12÷9=13÷9=

14÷9=15÷9=16÷9=17÷9=

(二)小组合作学习。

小组合作要求:

组长负责组织和分工,人人说一说自己的学习收获,在组内交流自学中不清晰的地方。发言要有顺序,当一人发言时其他成员要认真倾听。小组内解决不了的问题记下来,在班级展示时,交流解决。

【设计意图:小组合作探究的过程,拓宽了学生的参与面和开口面,通过每个学生思维的碰撞,逐渐将知识进行完善、系统化。同时抓住一些重点的内容引发学生的思考,同时发展学生的数学思维能力。】

(三)班级展示汇报。

1、同组内交流完了吗,哪个小组先来和大家一同分享你们的研究结果?

要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价。或者对他们的研究方法进行补充。

2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。

在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。

组长:哪个同学对我们小组的汇报有评价、补充或提出不懂的问题?

其他组的学生进行评价、补充、质疑。

(四)教师点拨提升。

1、教师适时点拨引领:

1)10÷3中余数1重复出现,所以商3不断重复出现;

2)循环小数是从小数的某一位起;循环小数是无限小数。

3)怎样确定商是循环小数呢?循环小数的表示方法。介绍循环节。

2、互相纠错,小组内同学互相检查尝试题做得是否正确,错误的加以改正。

【设计意图:班级展示提升是小组内形成统一的观点向全班同学展示交流并引发深入思考的过程,通过小组间思维碰撞,以及老师精彩的点拨引导,使教学重难点得以突破,使知识更加系统化,使学生将知识内化于心。】

三、挑战自我

一、请同学们判断下面哪几个数是循环小数,为什么?

0.9993.14159260.5477453.212121

5.027276.416416

二、判断

1、9.666是循环小数.

2、0.88保留三位小数是0.880

《循环小数》教学设计 篇6

教学目标

1、会根据需要,求出商的近似值。

2、培养学生数感和灵活应用意识。

教学过程

一、基础练习

1、取P26,第10题,48÷2.3(保留一位小数)3.81÷7(保留两位小数)审题。求商的近似值的方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。

独立完成,请生板演。

二、巩固练习。

1、独立完成P2610剩余的题

2、独立完成P2611再全班交流,如何比较。

3、P2613学生独立完成全班交流。如何处理结果?

小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。

你还能提什么数学问题?教师板书。

三、发展练习

1、P26第12题

请学生说说是如何思考的?肯定多种策略解决问题。

2、教师根据日常教学情况进一步补充针对性的练习

教学内容:循环小数P27-P28

教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的'简便记法。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学过程

一、自主探索,获取新知

1、师谈活引入新课

我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

观察竖式,你发现了什么?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?(师板书)

3、总结概括循环小数的意义

出示:28÷1878.6÷11

先计算,再说一说这些商的特点。(请生板演计算结果)

学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?

0.999…52.52525…4.1677…3.212121…3.1415926…

学生评议。

5、介绍简便记法

如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、学生小结

三、巩固练习

全班练习:19÷111.08÷3.313.25÷10.6报名板演,说出商是什么小数,依据是什么?

课后小记:

课题八:循环小数练习

教学内容:循环小数(二)P30

教学目的:

1、学生进一步巩固对循环小数概念的理解。

2、能比较两个(含)循环小数的大小。

学具准备:计算器

教学过程:

一、主动回顾,知识再现。上节课我们学习了什么知识?

二、单项训练,夯实基础。

1、进一步理解循环小数的概念。

完成P30.1

全班练,指名板演,哪些题的商是循环小数,如何判断的?

2、进一步掌握循环小数的写法,完成P30.2。

你如何表示商?(自己选择表示方法),全班交流校对。

3、求循环小数的近似值。完成P30.3。先请学生说说取近似值的方法,再让学生独立完成。

三、深化练习。完成P30.6先观察这些小数的特点,再试一试.

请学生说出判断大小的过程,教师适时评价。

1、想到把这些简便记法的循环小数还原。

2、2、1.23O1.233,只还原到第三位小数。

师小结:需要先观察,再比较,比较方法与以前比较小数的大小方法相同。

四、独立练习P3045

课题九:用计算器探索规律

教学内容:用计算器探索规律P29

教学目标:

1、能借助计算器探求简单的数学规律。

2、培养学生观察、归纳、概括、推理的数学能力。

3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。

教学过程:

一、激发学生兴趣

1、使用计算器,小组合作

任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?

2、小组汇报,展示过程,讨论发现。