返回首页
智远网 > 短文 > 教案 > 正文

有理数的加法教案

2025/12/11教案

此篇文章有理数的加法教案(精选6篇),由智远网整理,希望能够帮助得到大家。

有理数的加法教案 篇1

教学目标:

1.知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2.过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

3.情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

教学重点:

能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:

准确、熟练地进行加减混合运算

教学过程

一、课前预习

1、有理数的加法法则是什么? 2、有理数的'减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索

根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法= 26+(-42)---------------------------------------运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)

=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号=-6+13-5-3+6----------------------------------------省略加号=-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5说明:省略加号的形式-6+13-5-3+6表示-6,+13,-5,-3,+6这五个数的和。

例2.计算:

(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)

例4、若a=-2,b=3,c=-4,求值

(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [数据代入时,注意括号的运用] (2) (3)(4)

例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5问:(1)B地在A地何方,相距多少千米? (2)这小组这一天共走了多少千米

三、学习小结

这节课你学会了哪几种运算?

四、随堂练习

A类

1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

2计算

(1) 1+2-3-4+5+6-7-8++97+98-99-100

(2) 66-12+11.3-7.4+8.1-2.5

(6)-2.7-[3-(-0.6+1.3)]

B类

3.计算(1) + + ++ (2) + + ++

有理数的加法教案 篇2

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

四、学情分析

1.学生非常熟悉正数加正数,正数加零的情况。

2.有理数的分类、数轴、绝对值的相关知识已经掌握。

3.学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1.回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4; -7和4; 7和-4; -7和-4

【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0.

【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、 同号两数相加,取相同的符号,并把绝对值相加。

2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、 一个数同0相加,仍得这个数

老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的`符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值.

课堂练习:

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

3.用“>”或“<”填空:

(1)如果a>0,b>0,那么a+b____0;

(2) 如果a<0,b<0,那么a+b____0;

(3) 如果a>0,b|b|,那么a+b____0;

(4) 如果a0, |a|<|b|,那么a+b____0;

【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)

(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)

(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)

(5)a+0=a.

【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

(六)布置作业

(1)P56 习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法教案 篇3

【教学目标】

1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

3.掌握有理数加法法则,并能准确地进行有理数加法运算。

【学习重点、难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

难点:异号两数如何相加的法则。

【学习过程】

一、 预习自学:

1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

二、 教师点拨

知识点一:引导学生对前面的七个加法运算进行合理的分类

同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

(+5)+(-5)=______

一数与零相加: (-5)+0=______;

知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

结论:有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的'绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

四、课堂练习;36页随堂练习与习题(小组展示交流)

五、当堂检测;

1.用生活中的事例说明下列算是的意义,并计算出结果:

(-2)+(-3);(-3)+2

2.有理数加法法则:

绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.

3.计算:(+15)+(-7);(-39)+(-21);

(-37)+22;(-3)+(+3)

有理数的加法教案 篇4

一、教学内容分析

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

二、学习者分析

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

三、教学目标

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的.过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

四、信息技术应用分析

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

五、教学过程

1、复习提问,引入新知

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

2、出示问题情境、解决新知

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

3、探索发现,归纳新知

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

4、展示例题、应用新知

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

5、达标训练,巩固新知

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

6、规律总结,升华新知

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

7、作业和运用,拓展新知

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

有理数的加法教案 篇5

一、课题

略。

二、教学目标

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

三、教学重点和难点

重点

难点

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

结合具体例子,体会数学与我们的成长密切相关。

四、教学手段

现代课堂教学手段

教学准备

教师准备

录音机、投影仪、剪刀、长方形纸片。

学生准备

预习、剪刀、长方形纸片

五、教学方法

启发式教学

六、教学过程设计

一、导入

教师活动

学生活动

展示图片并播放录音。

宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

观察图片,听录音。

二、板书课题。

三、导学

教师活动

学生活动

1.现在让我们进入时空的隧道,回忆我们的成长历程:

出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)

(师、生共同讨论交流,从具体事例中分析并找出数学信息。)

2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?

3.指定若干名学生口答,师生共同系统归纳:

数与式:认识、计算、方程、解应用题;

图形:图形的认识、图形的画法、图形的计算;

统计知识。

4.数学知识的学习,不仅开阔了我们的.视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

(1)投影或小黑板展示下列问题:

①计算并观察下列三组算式:

②已知25×25=625,则24×26=(不要计算)

③你能举出一个类似的例子吗?

④更一般地,若a×a=m,则(a+1)(a-1)= 。

(老师点评、表扬)

(2)投影或小黑板展示教材第13页第4题。

通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的重大作用。

布置作业:

(1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;

(2)习题1.1第2、4题。

1.回忆、交流、积极大胆发言。

2.回忆、交流。

3.观察、计算、思考、探索。

4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

学生1

学生2

学生拼图(略)

七、练习设计

课堂基础练习

1、下列图形中,阴影部分的面积相等的是.

答案:A与B;C与D

2、三个连续奇数的和是21,它们的积为

答案:315

3、计算:7+27+377+4777

答案:5188

课后延伸练习

1、猜谜语(各打数学中常用字)

千人分在北上下;②1人立在口上边

答案:①乘;②倍

2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

答案:[5-(1÷5)]×5

3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

1 2 3 4 5 6 7 8 9 =100

答案:123-(45+67-89)=100

4、把长方形剪去一个角,它可能是几边形?

答案:三边形,四边形,五边形.

5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

答案:

能力提高训练

18

19

答案:7个,边长从大到

小依次为11、8、

7、5、3

1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

答案:36

八、板书设计

(一)知识回顾(四)例题解析(六)课堂小结

(二)观察发现例1、例2

(三)解方程(五)课堂练习练习设计

九、教学后记

有理数的加法教案 篇6

一、教学目标

1、知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

2、过程与方法

通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

3、情感态度与价值观

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:

重点:会用有理数加法法则进行运算、

难点:异号两数相加的法则、

关键:通过实例引入,循序渐进,加强法则的应用。

三、教学方法

发现法、归纳法、与师生轰动紧密结合。

四、教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的'减法”做铺垫。

五、教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(—2),黄队的净胜球为1+(—1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算、这节课我们来研究两个有理数的加法、两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量、若我们规定赢球为“正”,输球为“负”,打平为“0”、比如,赢3球记为+3,输1球记为—1、学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球、也就是(+3)+(+1)=+4、

(2)上半场输了2球,下半场输了1球,那么全场共输了3球、也就是(—2)+(—1)=—3、

现在,请同学们说出其他可能的情形、

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(—2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是(—3)+(+2)=—1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(—2)+0=—2;

上半场打平,下半场也打平,全场仍是平局,也就是0+0=0、

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和、但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法、现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加;

2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3、一个数同0相加,仍得这个数。

(三)应用举例变式练习

例1口答下列算式的结果

(1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);

(5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0、

学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则、进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值、

例2(教科书的例1)

解:(1)(—3)+(—9)(两个加数同号,用加法法则的第1条计算)

=—(3+9)(和取负号,把绝对值相加)

=—12、

(2)(—4.7)+3.9(两个加数异号,用加法法则的第2条计算)

=—(4.7—3.9)(和取负号,把大的绝对值减去小的绝对值)

=—0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1、本节课你学到了什么?

2、本节课你有什么感受?(由学生自己小结)

(五)作业设计

1、计算:

(1)(—10)+(+6);

(2)(+12)+(—4);

(3)(—5)+(—7);

(4)(+6)+(+9);

(5)67+(—73);

(6)(—84)+(—59);

(7)—33+48;

(8)(—56)+37、

2、计算:

(1)(—0.9)+(—2.7);

(2)3.8+(—8.4);

(3)(—0.5)+3;

(4)3.29+1.78;

(5)7+(—3.04);

(6)(—2.9)+(—0.31)

(7)(—9.18)+6.18;

(8)(—0.78)+0、

3、用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0|a|>|b|,那么a+b ______0

(六)板书设计

1.3.1有理数加法

一、加法法则二、例1例2例3