长方体和正方体教学设计
此篇文章长方体和正方体教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
长方体和正方体教学设计 篇1
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
(一)复习准备
1.提问:什么是体积?
2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)学习新课
1.长方体的体积。
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?(因为它们都含有同样多的体积单位——12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:一排摆出4个1厘米3的.正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。学生操作,看电脑动画图像。
教师板书:
3(厘米)
3(厘米)
2(厘米)
18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:5(厘米)4(厘米)3(厘米)60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:板书:V=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。答:它的体积是84厘米3。练习:(投影出题,学生口答。)一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2.正方体体积。
(1)请学生看电脑动画录像:长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?问:这个正方体的体积可以求出来吗?
学生口答,老师板书:3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?
学生口答,老师板书:2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。用V表体积,a表示棱长,公式可写成:V=aaa或者V=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。
(3)说一说长方体和正方体的体积计算方法和字母公式。教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
(三)巩固反馈
1.口答填空。课本P35练习七:2,3。
2.口答填表:
3.判断正误并说明理由。
①0.23= 0.2×0.2×0.2;
②5x2=10x;
③一个正方体棱长4分米,它的体积是:43=12(分米3);
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。
(四)课堂总结及课后作业
1.长方体的体积计算方法及公式。正方体的体积计算方法及公式。
2.作业:课本P35练习七:4,6。
课堂教学设计说明
本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。新课教学共分两个部分:
第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。
第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。
长方体和正方体教学设计 篇2
教学目标:
1、通过观察、分类、操作、讨论等活动,进一步认识长方体、正方体,了解长方体、正方体各部分的名称。
2、经历观察、操作和归纳过程,发现长方体和正方体特点,理解他们之间的关系。
3、通过具体的操作活动,发展空间观念,增强数学学习的兴趣和学好数学的自信心。
重难点:
通过观察、操作等活动概括出长方体、正方体的特征。掌握长方体、正方体的特征,以及长方体和正方体之间的关系。让学生理解长方体棱的关系和建立初步的空间观念。
教学过程:
本课我设计了四个环节。
第一环节创设情境,激发学生的兴趣。让学生联系已知、观察实物、建立表象,导入新课:
首先,课件显示已经学过的平面图形,强调“平面图形是由线段围成的”,为下面讲“体是由平面围成的”埋下伏笔。接着,老师出示长方体并引导学生观察:“它是由什么围成的?生活中哪些物体的形状是这样的?”在学生作答的基础上,课件出示生活中见到的各种长方体物体,告诉学生这些物体的形状是长方体,让学生初步感性认识长方体。然后老师适时提问:“怎样判断一个物体的形状是不是长方体呢?我们研究了长方体的特征,就能够准确地判断了。”这种利用直观图形复习旧知,提问题导课的方式能够激发学生的学习兴趣,使学生明确本节课的学习目标,并激起了求知欲,自觉、有意识地投入到新知识的学习中去。
第二环节动手实践,探索新知。
在这个环节中我抓住目标,让学生合作学习,概括出长方体和正方体的特征,抽象图形。
(一)探究长方体的特征。
在这个重点环节中,我设计了四个教学层次。
1、观察实物或模型,认识长方体的面、棱、顶点,初步感知面、棱、顶点的含义。让学生仔细观察,并用手摸一摸,通过视觉、触觉等多种感官共同参与大脑的分析活动,鼓励学生交流讨论。在学生观察的时候,教师要深入到学生当中,引导他们观察,概括定义时,引导学生用自己的话来描述长方体的外部构成。在学生充分感知的基础上,课件进行演示,然后用下定义的方式揭示概念,(课件出示长方体的面、棱、顶点及定义——长方体上平平的部分是长方体的面;两个面相交的边叫长方体的棱;三条棱相交的点叫长方体的顶点。)对于顶点的认识,让学生观察,用手摸一摸长方体三条棱相交的地方有什么?学生可能说有一个角。如果出现这种情况,教师可以引导学生回忆什么叫角,并画角研究它的构成,使学生知道刚才看到的不是角而是顶点。课件演示:先闪动三条棱,再闪动三条棱相交的点,指出顶点的含义:我们把三条棱相交的点叫做顶点。这样使学生对长方体各部分的名称留下深刻的印象,为展开研究长方体的特征铺平道路。
2、师生共同探究长方体的特征,解决重点。
这部分重点教学我采用分组讨论、合作学习的方式,让学生动手操作,用数一数、比一比、量一量、剪一剪等方法,并动脑想一想,长方体有哪些特征,给学生留出广阔的探究空间。在学生充分讨论的基础上,组织学生汇报交流。如果学生回答得不够充分或条理不太清晰时,我预设了这样一些铺垫性的问题:
(1)长方体有几个面?你是怎样数的?每个面是什么形状?相对的面有什么关系?
(2)长方体有多少条棱?你是怎样数的?哪些棱的长度相等?
(3)长方体有多少个顶点?
学生汇报交流,教师借助课件动态显示验证:大家请看。
(1)这是演示让学生数面,并验证相对的面完全相同。鼓励学生用多种方式进行探索,如把长方体剪开,用重叠的方法比较面的特点;也可以把面拓印在纸上,通过比较发现相对的面完全相同。让学生知道根据长方体面的位置,我们分别把它们叫做前面、后面、上面、下面、左面、右面。
关于面的形状让学生观察发现有两种情况:一种是6个面都是长方形,另一种情况是有4个面是长方形,另外两个相对的面是正方形。
(2)这是演示把棱分成四组,有规律地数出有12条棱,并验证相对的4条棱的长度相等。
探讨棱的特征时,可以问问学生是怎样数的,怎样数才能既不重复又不会遗漏,让学生直观感受数棱时把棱分成三组,每组4条,然后按顺序数。通过量每条棱的长度,发现规律:相对的棱的长度是相等的。通过课件的演示发现这四条棱是平行的。在与学生交流中通过观察、数一数来突破教学的难点。
(3)这是显示有8个顶点。
让学生结合课件体会按照一定的顺序数一数,长方体有几个顶点,学生说出数的结果。
探究出面、棱、顶点的特点之后,让学生看课件再简单回顾一下,指名让学生把长方体的特征完整的总结。(课件出示:依次隐去6个面,再分组闪动12条棱,最后一次闪动8个顶点。)学生回答以后教师指出,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。
观察、发现、总结长方体的特征是本课的重点和难点。在这个过程中,老师要适当引导,循序渐进。比如在数面和棱的多少时,通过先让学生自已数,过渡到老师指导下的有规律地数,不仅教知识而且教方法,对培养学生的能力大有益处。预设:学生在数面、棱、顶点时可能重复或遗漏,所以在此引导学生按一定的顺序数,同时数的时候不要随意翻转手中的学具。此外,学生可能会认为相对的棱只有两条,教师要再次给学生观察的时间,使学生发现长方体相对的棱有四条。让学生分组讨论、合作学习,使学生充分参与到知识的形成过程,体现了教师为主导、学生为主体的教学原则,培养了学生团结协作解决问题的精神。
3、认识长方体的立体图。
由实物到几何图形,是认识的又一次飞跃,是培养和发展学生空间观念的主要凭借,也是本节课的教学难点。所以在和学生一起观察、发现、归纳出了长方体的特征后让学生认识长方体立体图,完善对长方体的整体认识。(过渡语)刚才我们认识了这些长方体,如果把它们画下来该是什么样的呢?下面我们就来研究如何画图表示长方体。
让学生拿自己的长方体,从不同角度进行观察,看最多能看到几个面。学生观察后发现,最多能看到它的三个面。然后让学生把自己的长方体放在桌子的左上角进一步观察,你看到了哪三个面,哪三个面看不到?学生实践后用课件演示,如果把这个长方体放在左前方观察,所看到的图形就是这样的。(课件演示)在这个图形中,你看到了哪几个面?哪几个面看不到?结合课件告诉学生,看不到的面用虚线表示。这叫长方体的`立体图,看图的时候,同学们要注意,上、下、左、右这四个面画的是平行四边形,但实际上表示的却是长方形。然后让学生指一指书上立体图形的6个面、12条棱、8个顶点加以巩固。
这样设计的原因是实物与图形之间的相互成像是空间观念的主要表现。经过这样一个过程就能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。并运用多媒体的动画功能,从实物中隐化、抽象出长方体物体的图形。并与前面学习的长方体的特征,在学生头脑中共同构建,由实物特征、图形,形成长方体的概念,突破了本节课的教学难点!
4、抽象图形,并认识长方体的长、宽、高
在认识长方体图形的基础上,课件演示并讲解长、宽、高的概念,(我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。)突出强调由于长方体放置的方式不同,其长、宽、高也随之变化,(结合立体图说明,习惯上,长方体的位置固定以后,把底面中较长的棱叫做长,较短的中棱叫做宽,和地面垂直的棱叫做高。)然后,教师将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。接着让学生指出自己手中长方体的长、宽、高,再量一量手中这个长方体框架的长宽高分别是多少?根据学生交流的结果可能不同的情况,说明长方体摆放位置不同,长宽高的说法可能不一样。这样做的意图是在空间观念的形成过程中,视觉、触觉可以为大脑思维提供直接的、丰富的素材,因此我设计让学生的手、眼、脑协同发挥作用,以形成长方体的表象。
(二)探究正方体的特征。
有了研究长方体特征的基础,在探究正方体的特征时,可以通过长方体变成正方体的动画,把正方体的特征化难为易,让学生初步体会到正方体与长方体的关系,迁移学习方法,较好的达到学习目标。
用课件出示动画图像:长方体转换为正方体,学生观察后讨论新得到的长方体与原来长方体比较有什么变化?归纳得出结论:长、宽、高变为相等,我们把它的长、宽、高都叫做棱长,六个面都变成了正方形,长方体变为正方体。然后让学生观察自己带来的正方体,如魔方、积木等,用刚才研究长方体特征的方法研究正方体的特征。通过学生的研究可以得到:正方体的6个面是完全相同的正方形,正方体12条棱长相等。
通过观察、实践学生概括出了长方体和正方体的特征,此时需要对新课进行归纳总结。
引导学生按照面、棱、顶点的次序,找出长方体和正方体的相同点和不同点,并整理出表格。然后分组讨论:正方体在具有长方体这些特征的前提下,它的独特之处是什么?归纳出结论:正方体是特殊的长方体。课件出示长方体、正方体的集合图。
通过对长方体及正方体的特征比较,从而渗透事物是相互联系的辩证思想,以图文结合的形式生动形象直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通。
第三环节实践运用,巩固新知。
1、判断。
前3道小题为基本题,通过这样的练习使学生进一步掌握并灵活运用长方体、正方体的特征。第4小题加深了难度,培养学生的空间想象力,当学生有困难时,可让学生利用手中的小正方体摆一摆,可以在本上画一画,教师则借助课件帮助学生理解。
2、选择。
让学生区分计算某一个面的面积时需要用到哪一条棱的长度。独立探讨长方体棱长总和的计算方法。这题的设计目的是让学生在空间想象力的基础上根据所求问题筛选出有效信息解决问题,并且及时反馈学生对前面所学知识的掌握程度。也可以为调整后续教学方案获得新的信息。
3、拓展题。
变式拓展练习的设计,是为了在加强基础知识训练的同时,提升学生灵活应变的能力。
第四环节梳理知识,反思总结。
要求学生以小组为单位进行学习汇报,整理本节课学到的知识,并说出是怎样学到的。这样做的目的是不仅关注学习的结果,更关注知识的探讨过程,把学生当作知识建构的主体,当作活生生的、富有个性的人,使数学课堂焕发出生命的活力。
以上是我对《长方体的认识》一课的粗浅的理解和不成熟的设计,“三人行,必有我师焉。”学无止境,研无止境,在思维的碰撞中方能迸射出智慧的火花。请各位领导老师多批评指正。
长方体的认识教学反思
1、对于长方体长和宽如何确定
长方体的长和宽到底如何确定?是以底面长方形的长边为长,短边为宽,还是以长方体水平放置后左右方向的棱为长,前后方向的棱为宽?这一问题在我校数学组内产生了争议。其实,如何确定长方体的长、宽、高可能只是人们的一种约定俗成。无论如何确定,它的表面积和体积的大小都不会因此发生改变。但如果按左右方向为长、前后方向为宽,垂直方向为高,那么在教学长方体的表面积时就可以帮助学生总结出如下规律:
长方体的前、后面=长X高X2
长方体的左、右面=宽X高X2
长方体的上、下面|=长X宽X2
如果按底面长方形的长边为长、短边为宽,则在长方体的表面积计算推导过程中就必须根据物体的摆放来灵活确定每个面的面积如何列式了。这一问题如何处理,将关系到后继长方体表面积的教学设计。
在无法定夺的情况下,请教了教研员。结论如下:如果长方体是水平放置,人们习惯于将左右方向的棱称为长,前后方向的棱称为宽。如果长方体非水平方向放置,人们则一般以底面较长的边为长,较短的边为宽。
2、纸上得来终觉浅,绝知此事必躬行。
有人说“我听了,就忘了;我看了,记住了;我做了,才理解了。”听、看、做代表着三个不同层次,在大脑皮层留下的痕迹也有深有浅。今天的课堂教学很好地印证了上面这段话,也使我深切地感受到课堂应该成为所有学生探究的舞台,而非老师或个别学生展示的舞台。
以往开学,每位学生都会有数学学具盒供教学操作时使用。其中本册学具盒中就有可拼成长方体、正方体框架的不同颜色、长短的小棒。可这学期由于某些原因学具盒暂时还未发到学生手中。这节课,我又只要学生准备了长方体盒子,而没要求他们带不同长短的小棒及橡皮泥。所以例2,今天只能以个别学生上台用教具操作演示,其他学生当“观众”的方式进行教学。这种学习方式,虽然学生通过观察框架也能得出长方体12条棱可以分三组,每组互相平等的4条棱长度相等的结论,但到后面巩固练习中要求棱长和时就又迷糊了。有的学生必须看实物或框架图才能正确列出算式,还有的学生不知道是将长、宽、高乘3还是乘4……
实践证明:教师的演示或部分学生的操作不能代替大家的自主探究,只有亲身参与,才能更好地将书本知识内化为个体储备,进而运用到解决生活中的实际问题。因此在今后教学中,要注意拓展探究的时间和空间,让课堂成为学生探究的舞台。
3、对棱长和的教学思考
在教学完长、宽、高的认识后,我顺势补充了长方体棱长和的相关内容。原因有二:一是通过拼摆长方体框架,能够帮助学生顺利推导出棱长和的计算公式;二是教材练习中对这部分有所涉及,必须在课堂教学中有所渗透。
作业中相应习题建议调换一下顺序,先教学第7题,再讲第6题。因为第7题是要求长方体12条棱长之和,而第6题则需要根据实际灵活处理,只求出其中8条棱长之和即可(少了两条长和两条宽)。
4、知识点较多,时间分配上有些力不从心
本课我既想让学生通过充分探究发现长方体的特征,又想培养他们的空间观念,能仅凭立体图就正确回答出长方体各个面的面积该如何列式,还想让他们掌握棱长和的简便求法。
我将长方体的特征定为本课教学重点,因此在探究上给予学生充分的时间,并在方法与策略上注意引导,学生学得较扎实。但到后面两部分时,明显觉得教学时间不够,只能囫囵吞枣。总之,感觉一节课40分钟难以扎实完成教学任务。
如果时常无法在预订时间内完成教学任务,而需要再花课外时间来补充,是否说明这样的教学设计很失败?你们认为上述三个知识点是否应该在一节课内完成?如果是,又该如何分配时间较为合理呢?
长方体和正方体教学设计 篇3
教学目标:
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点难点:
长方体和正方体表面积的含义及其计算方法的推导过程。
教学准备:
长方体、正方体模型。
教学过程:
一、猜测导入
出示两个纸盒(一个长方体、一个正方体)。
提问:长方体和正方体有哪些特征?
谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?
有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)
二、探究新知
1、引导探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的'表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。
(2)学生独立列式,指名汇报,并根据学生回答进行板书。
解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)
解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)
答:至少要用148平方厘米的硬纸板。
(3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?
2、自主探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?
(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。
(3)组织交流反馈。
3、揭示表面积的含义。
谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?
揭示:长方体或正方体6个面的总面积,叫做它的表面积。
(板书课题:长方体和正方体的表面积)
三、练习巩固
完成课本“练一练”以及练习四第一、二、五题。
四、全课小结
谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?
五、布置作业
1、做练习四第三、四题。
长方体和正方体教学设计 篇4
一、教学构思
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
(一)引导学生学习正方体表面积的计算方法:
1、回忆:上节课我们学习了长方体表面积的`概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
2、联想:拿起(一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4、教学例2:提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、说明:
我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。
三、鱼缸的制作问题:
1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3、教学例3
四、(出示长方体模型,把它看成鱼缸的模型)
1、鱼缸缺少哪个面的玻璃?(上面)
2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)
3、指名学生板演,集体订正。
4、改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
五、练习
书P42页练习二的第一、二题。
(要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
六、课后反思
长方体和正方体教学设计 篇5
〔教学内容〕
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
〔教材简析〕
〔教学目标〕
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
〔教学重点〕
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的`面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
长方体和正方体教学设计 篇6
教学基本
内容六年制小学数学第十一册P25—26。
教学目的和要求
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
教学重点
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
教学方法
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
教学环节设计
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的'小长方体的个数,并记录在表格中。
问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?
师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?
交流得出:V=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
返回首页