《最大公因数》教学设计
此篇文章《最大公因数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《最大公因数》教学设计 篇1
教学内容:
第45—46页。
教学目标:
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。
3、使学生能探索出解决问题的有效方法。
教学重、难点:
探索找两个数的公因数的方法。
教具准备:
实物投影仪等。
教学过程:
一、填一填。
1、呈现找公因数的一般方法:
(1)让学生分别找出12和18的因数,并交流找因数的方法。
(2)将这些因数填入两个相交的集合。引导学生重点思考:两个集合相交的部分填哪些因数?
引出公因数和最大公因数的概念。
(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的`因数,再找出公有的因数和最大公因数。
2、引导学生讨论其它的方法。
二、练一练。
1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。
2、第3题,学生独立完成。
3、第4题,让学生找出这几组数的公因数后,说一说有什么发现。这里第一行的两个数的公因数只有1,第二行的两个数具有倍数关系,对于这样有特征的数字,
4、让学生用自己的语言来表述自己的发现。
5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。
三、数学探索。
1、写出1、2、3、4、5、……、20等各数和4的最大公因数。
(1)先让学生填表,找出这些数与4的最大公因数。
(2)再根据表格完成折线统计图。
(3)组织学生观察表格,讨论“你发现了什么规律?”
2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。
四、总结:
谁能说一说找公因数的一般方法是什么?
板书设计:
找最大公因数
12=()×()=()×()=()×()
18=()×()=()×()=()×()
12的因数:18的因数:
《最大公因数》教学设计 篇2
教学内容:
完成练习五的第6~11题。
教学要求:
1、通过练习,使学生发现求两个数的最大公因数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最大公因数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重点:学生掌握求两个数的最大公因数的一些简捷的方法。
教学难点:学生回选择用合理的方法求两个数的最大公因数。
教学过程:
一、基础练习
找出下面每组数的最大公因数。
14和16 30和10 15和9 21和28
二、完成第29页的第6~11题。
1、第6题
⑴①让学生观察左边4题,说说这几组数有什么共同的特点。
②找出每组两个数的.最大公因数。
③比较和交流:有什么发现?
(有些情况下,两个数的最大公因数是它们中较小的那个数。)
⑵独立完成右边4题,再比较交流发现了什么?
(有些情况下,两个数的最大公因数就是1。)
2、第7题
先由学生独立完成,然后说说分别是什么方法求出每组数的最大公因数的?体会方法的多样性。
3、第8题
如果有困难,可让学生用自己熟悉的方法具体地找一找。
4、第9题
先让学生填表,并说说其中的规律;然后小组合作找出2、4、5分别与1、2、3、4、5……20等各数的最大公因数,并说说其中的规律。
5、第10题
先帮助学生弄清题意,知道裁出的正方形的边长应该是12和20的最大公因数,再让学生在图中画一画,并回答提出的问题。
6、第11题
三、小结:
通过今天这一节课的学习,你有什么收获?
《最大公因数》教学设计 篇3
设计说明
1.创设教学情境,揭示数学与现实生活的联系。
在教学中创设恰当的教学情境,可以起到激发学生学习热情和学习兴趣,提高课堂教学效率的作用。本设计注重联系生活实际,把数学知识设置在具体生活情境之中,让学生在具体情境中发现问题,引发学生的思考,从而明确公因数和最大公因数的概念,让学生体会到数学与生活的密切联系。
2.让学生自主探究,向学生渗透集合思想。
掌握科学的数学思想方法对提升学生的思维能力和数学学科的后续学习都具有十分重要的意义。在学习公因数的过程中,把8和12的公因数用集合图的形式表示出来,向学生渗透了集合思想,为学生以后的学习奠定基础。
课前准备
教师准备 卡片 PPT课件
教学过程
⊙复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
⊙创设情境,引出问题
今天我们来玩一个找伙伴的`游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
学生自学教材60页例1。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
⊙求两个数的最大公因数
1.明确方法,提出要求。
师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
完成教材61页1题。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
设计意图:通过观察、发现、设问引导学生探究求最大公因数的方法。通过交流思考、师生讨论让学生的推理能力得到充分发挥。
《最大公因数》教学设计 篇4
一.教学设计学科名称:
北师大版数学五年级上册《找最大公因数》
二.所在班级情况,学生特点分析:
我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。
三.教学内容分析:
教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。
四.教学目标:
知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
五.教学难点分析:
教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的'意义。
六.教学课时:
一课时
七.教学过程:
(一)复习
师:出示3×4=12,( )是12的因数。
生:3和4是12的因数。
(二)探究新知
1、认识公因数和最大公因数
(1)师:除了3和4是12的因数,12的因数还有哪些?
生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。
师:要找出一个数的全部因数,需要注意什么?
生:要一对一对有序地写,这样才不会遗漏。
师:照这样的方法,请你写出18的全部因数。
生独立写后汇报:18的因数有:1、2、3、6、9、18
(此时出示集合图)
师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。
生做后汇报师板书于圈中。
(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。
生找出12和18相同的因数有:1、2、3、6
师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。
师:这里最大的公因数是几?
生:最大是6。
师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。
板书课题:找最大公因数
(此时出示集合图)
师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论
(生分组讨论)
汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。
师:请大家完成这个题。(生做后订正)
2、探索找最大公因数的方法
(1)列举法
刚才我们找最大公因数的方法叫做列举法。(板书:列举法)
请大家用这种方法找出下面每组数的最大公因数。 9和15
(2)利用因数关系找
师:请大家翻到书第45页,独立完成第一题。
生汇报:
8的因数: 1、2、4、8
16的因数: 1、2、4、8、16
8和16的公因数: 1、2、4、8
8和16的最大公因数是 8
师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:8是16的因数,所以8和16的最大公因数就是8。
师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)
练习:找出下面每组数的最大公因数。 4和12 28和7 54和9
(3)利用互质数关系找
师:请大家独立完成第二题。
生汇报:
5的因数: 1、5
7的因数: 1、7
5和7的最大公因数是 1
师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:5和7都是质数,所以5和7的最大公因数就是1。
师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)
练习:找出下面每组数的最大公因数。 4和5 11和7 8和9
(4)整理找最大公因数的方法
师:今天我们学习了用哪些方法找最大公因数?
生:列举法,用因数关系找,用互质数关系找。
师:我们在做题时,要观察给出的数字的特征选用不同的方法。
(三)练习
书46页3、4、5题。生独立完成,师巡视指导。
(四)全课小结
这节课你有什么收获?
八.课堂练习:
在括号里填写每组数的最大公因数
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作业安排:
完成练习册上的习题
十. 附录(教学资料及资源):
1、教师用书:北师大版五年级数学上册
2、数字卡片
十一. 自我问答:
短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?
教学反思:
本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。
在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。
找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。
《最大公因数》教学设计 篇5
第一课时
一教学内容
教材第79、80页的内容及第82页练习十五的第1题。
二教学目标
1.理解两个数的公因数和最大公因数的意义。
2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3.培养学生抽象、概括的能力。
三重点难点
理解公因数和最大公因数的意义。
四教具准备
多媒体课件,方格纸(每人一张)。
五教学过程
(一)导入
1.提问:什么是因数?
2.写出16和12的所有因数。
提问:你是怎样找一个数的因数的?
(二)教学实施
1.出示例1。
(1)引导学生审题,理解题意,在储藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。
(2)学生以小组为单位,探究如何拼摆。
每组4人,在课前印好画有长方形的方格纸上,每人选择方砖的一种边长,试一试,只要画满一条长边,一条宽边就可以。
(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。
(4)通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。
2.教学公因数和最大公因数。
根据复习题中写出的16的因数、12的因数中找出公有因数,得出问题的答案,地砖的边长可以是1cm、2Cm、4Cm,最大的是4cm。
老师用多媒体课件演示集合图。
16的因数12的因数
指出:1、2、4是16和12公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的'最大公因数。
3.完成教材第80页的“做一做”。
让学生独立在教材下面写一写,再说一说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。
4.完成教材第82页练习十五的第1题。
请学生填在教材上,说一说是怎样找的。
(四)思维训练
有三根小棒,分别长12厘米,18厘米,24厘米。要把它们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?
(五)课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
第二课时
一教学内容
最大公因数(二)
教材第81页的内容。
二教学目标
1.通过教学,使学生加深对公因数和最大公因数意义的理解,掌握找两个数最大公因数的方法。
2.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
三重点难点
掌握找两个数最大公因数的方法。
四教具准备
投影。
五教学过程
(一)导入
提问:什么叫公因数?什么叫最大公因数?
(二)教学实施
1.出示例2。怎样求18和27的最大公因数?
(l)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18的因数:①,2,③,6,⑨,18
再看18的因数中有哪些是27的因数,再看哪个最大。
方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。
27的因数:①,③,⑨,27
方法四:先写出18的因数:1,2,3,6,9,18。从大到小依次看18的因数是不是27的因数,9是27的因数,所以9是18和27的最大公因数。
2.引导学生看教材第81页的“你知道吗”,指导学生自学用分解质因数的方法,找两个数的最大公因数。
24和36的最大公因数=2×2×3=12。
指出:两个数所有公有质因数的积,就是这两个数的最大公因数。
3.完成教材第81页的“做一做”。
学生先独立完成,独立观察,每组数有什么特点,再进行交流。小结:求两个数的最大公因数有哪些特殊情况?
(1)当两个数成倍数关系时,较小的数就是它们的最大公因数。
(2)当两个数只有公因数1时,它们的最大公因数也是1。
第三课时
一教学内容
最大公因数(二)
教材第82、83页练习十五的第2一9题。
二教学目标
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
《最大公因数》教学设计 篇6
教学目标:
1、通过游戏和动手操作理解两个数的公因数与最大公因数的意义,并能用集合图表示两个数的因数和公因数。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、渗透集合思想,培养学生的分析,归纳能力和解决问题能力。
教学重点:理解公因数和最大公因数的意义。
教学难点:灵活找两个数的公因数的方法。
教具准备:课件、实物展示台
教学过程:
一、复习旧知,导入新课
师:同学们,我们已经学过找一个数的因数的方法,如果老师现在给你一个数(12),你能很快找出它的因数吗?(生回答师板书)
师:你们真棒!照这样的方法,你能很快说出18的全部因数吗?(生回答师板书)
师:哪几个数既是12的因数又是18的因数?
生:1、2、3、6
师:能不能简单的说说它们是12和18的什么数吗?
生:公因数
师:在这些公因数里面,哪个数最大?
生:6最大
师:6就是12和18的最大公因数。
这就是我们这节课要学习的`内容———找最大公因数(师板书课题)
二、探究新知:
1、学生当裁判,玩游戏:
(1)请学号是12因数的同学到前面来。(左)
(2)请学号是18因数的同学到前面来。(右)
(个别同学站位出现问题,请全体同学做裁判,1、2、3、6号应该站在什么位置?为什么?)
2、学习集合图:
生:让1、2、3、6号站在中间。因为1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。可以用集合圈来表示。(课件出示)
(1)师:两个集合圈交叉重合的部分表示什么?填什么数?(生:填公因数)
(2)师:那圈里的左边、右边填什么数?(同桌交流,汇报结果)
3、得出结论:1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。在这些公因数里面,哪个数最大?(生:6最大)6就是12和18的最大公因数。
4、师:找两个数的公因数,除了上面的方法,谁还有不同的方法?
生:我先找出12的全部因数,再在12的因数中圈出和18相同的因数。
5、小结:
找两个数的公因数的方法:①先找出各个数的因数②找出两个数公有的因数③确定最大公因数
三、小组合作,解决问题。
小组合作完成下面各题:
找每组数的最大公因数:
(1)、4和86和125和1021和7
观察每组数,我们发现:(上面的每组数都是倍数关系,它们的最大公因数是较小的数)
(2)、3和52和711和1913和23
观察每组数,我们发现:(上面的每组数都是不相同的质数,它们的最大公因数是1)
(3)、8和911和125和614和15
观察每组数,我们发现:(上面的每组数都是相邻的自然数(0除外),它们的最大公因数是1)
总结:我们今天学习了找两个数的最大公因数的方法有:
1、列举法
①先找出各个数的因数
②找出两个数公有的因数
③确定最大公因数
2、画集合图的方法
3、特殊数的方法:
(1)如果两数是倍数关系,那么它们的最大公因数是较小的数。
(2)如果两数是不相同的质数,那么它们的最大公因数是1。
(3)如果两数是相邻的自然数(0除外),那么它们的最大公因数是1。
四、巩固拓展:
1、我是小法官,对错我来判:
(1)两个数的公因数的个数是无限的。()
(2)两个数的公因数一定小于这两个数。()
(3)最大公因数是1的两个数一定都是质数。()
2、学校组织了男生30人,女生20人的合唱队,男女生分别排队,要使每排人数相同,每排最多有多少人?
3、写出下列分数分子和分母的最大公因数:
8/12()5/7()9/10()6/18()
五、总结回顾:
通过这节课的学习,你有什么收获?
板书设计:
找最大公因数
12的因数有:1、2、3、4、6、12
18的因数有:1、2、3、6、9、18
1、2、3、6是12和18的公因数
6是它们的最大公因数
两个数公有的因数叫作这两个数的公因数
公因数中最大的一个叫作它们的最大公因数
返回首页