返回首页
智远网 > 短文 > 教案 > 正文

五年级下册数学教案

2025/12/17教案

此篇文章五年级下册数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。

五年级下册数学教案 篇1

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的'倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案 篇2

课题:

列方程解应用题复习(行程问题)

学情分析:

相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学目标(课时目标):

1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

3、逐步掌握画线段图分析题目的方法。

教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

教学难点:认识相遇的过程中理解运用等量关系的解决问题。

教学准备:PPT、练习本

教学过程:

教学活动教学说明

一、复习引入

1、揭题

2、常见的相遇问题类型(手势演示)

(1)同时出发,相向而行

(2)一车先行,另一车再行,相向而行

(3)同时出发,途中一车暂停,相向而行

二、基础练习

1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

(1)画线段图分析题意

(2)找出等量关系

(3)列式

2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

小结:(1)相加=总路程

(2)相差=路程差

3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

小结:(3)到中点相等

4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

小结:(4)总路程相等

三、巩固提升

5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

四、思维训练

9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的.感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

板书设计:列方程解应用题(行程)

相遇问题(1)相加=总路程

(2)相差=路程差

(3)到中点相等

(4)总路程相等

教学反思:

行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

1、合理组织安排教材,激发学生主动参与教学

首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

2、运用线段图进行教学,培养学生的分析、观察能力

学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

3、为学生提供充分的思考、分析的空间

在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

4、分层递进,满足不同层次需求

在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案 篇3

教学内容:

人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

学情分析:

《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

教学目标:

1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

教学重难点:

重点:最简分数的意义和约分的方法;掌握约分的方法。

难点:能准确的判断约分的结果是不是最简分数。

教具、学具准备:

课件

教学过程

复习铺垫。

课件出示一起回答用列举法找出24和30的公因数和公因数(为24

/

30约分做准备)

1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

2、填空(说说为什么,什么是分数的基本性质)

(教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

二、探究新知。

(一)、猜测、验证和比较,理解最简分数的意义

1、出示例3的教学情境图,让学生观察。

2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的.对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

/

4,生3:75

/

100和3

/

4是一回事吗?)

3 、猜一猜:75

/

100和3

/

4

/

是一回事吗?

4、验证:让学生同桌讨论,把验证过程写在练习本上。

5、学生汇报结果,教师课件演示。

6、引导学生比较75

/

100和3

/

4两个分数的异同,得出最简分数的概念。

相同点:分数的大小相等

不同点:75

/

100分子和分母较大,含有公因数1、5、25;3

/

4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

活动:请学生例举最简分数的例子。

教师说学生判断,

学生说大家判断

学生说同桌判断

抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

8、课件出示练习:指出下面哪些分数是最简分数?为什么?

5

/

7 6

/

9 10

/

12 11

/

12 8

/

10 14

/

169

/

1624

/

25 21

/

24 13

/

17

名回答,说明为什么。

还是抓住关键:分子和分母只含有公因数1

假如都是2或3或5等的倍数,就不只有公因数1。

(二)、探究约分的意义和方法

过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

课件出示例4.判断24

/

30是不是最简分数(不是,除了1外,还有公因数2、3、6)

把24/30化简成最简分数

师提出思考问题:

(1)、化简指什么?使分子分母的数字变小

(2)、化简后大小不能变,要运用什么性质?等式的基本性质

(3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

(4)、化简到什么时候为止?最简分数,分子分母只有公因数1

学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

完成后小组内交流。

巡视,指导。

交流探究结果。

小组汇报结果。

(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

24

/

30=24+30

/

30+2=12

/

152

/

15=12÷3

/

15÷3=4

/

5

(2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。

24

/

30=24+6

/

30+6=4

/

5

/

小结:教师用课件演示比较两种约分方法,并总结约分的意义。

约分的概念:

师:约分还有一种书写方法,请同学们看第85页例4,

并在练习本上写一写约分的这种写法。

6、教师课件直观演示约分的另一种书写格式。

三、巩固练习(课件演示)

过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

1、判断下面各等式,哪些是约分?为什么?

2、错题改正。

3、指出下列分数分子和分母的公因数。

4、分苹果。

四、课堂小结

这节课我们学习了什么内容?(板书课题:约分)

五、板书设计

约分

方法一:

24

/

30=24÷2

/

30÷2=12

/

15

12

/

15=12÷3

/

15÷3=4

/

5

方法二:

24

/

30=24÷6

/

30÷6=4

/

5

75

/

100= 3

/

4

不同点:分子和分母较大分子和分母较小,

含有公因数1、5、25只含有公因数1

最简分数

教学反思

1、为学生的数学思考搭梯子。

课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

如:在探究理解最简分数意义这一环节的教学中,学生验证出75

/

100和3

/

4相等以后,我提出了一个问题:75

/

100和3

/

4有什么区别?很多学生都能看出75

/

100分子分母较大,3

/

4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

/

100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

/

30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

2、为学生交流搭台子。

课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

3、不动笔墨不读书。

数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

4、教学环节过渡亦无痕。

好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

5、思想方法渗透亦无形。

数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

欠缺火候的地方:

有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

五年级下册数学教案 篇4

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:

1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:

掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:

组织学生讨论、交流,使学生体验学习中通过合作交流带来的.方便和快乐。

教学准备:

课件。

学生准备:

预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×4324×1244×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级下册数学教案 篇5

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的`体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级下册数学教案 篇6

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的`。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。