返回首页
智远网 > 短文 > 教案 > 正文

《比例的意义和基本性质》教学设计

2025/12/18教案

此篇文章《比例的意义和基本性质》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《比例的意义和基本性质》教学设计 篇1

比例的意义和基本性质导学案

教学内容:比例的意义和基本性质教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

一、趣味导课

1、谈话

师:大家或许曾在电视节目中看到过这样的情节:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?其实是因为在我们人体上存在着许多有趣的比!例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1……那么这些有趣的比还有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。像这些生活中的例子,实际上就是用这些有趣的比去组成一个个的比例来进行计算的.。这节课我们就一起来学习“比例的意义和基本性质”。板书课题

2、复习

(1)、什么叫做比?什么是比值?(2)、怎样求比值?(3)、求比值

6:10

9:15

1/2:1/3

6:4

:

学生求出各比的比值后,再提问:观察一下,这几个比的比值有什么特点?因为这两个比的比值相等,所以我们可以用一个符号连起来。板书:像这样表示两个比相等的式子叫做比例

二、探究新知

(一)深入探讨:(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成一个比例,关键要看什么?

(二)做一做出示课件中的做一做

(三)教学比例的基本性质

1、自学比例各部分的名称。

教师:下面我们就来看看组成比例的四个数分别被叫做比例的什么?(学生看书第二页中间内容后回答)随着学生的回答教师出示:

: = 60: 40

└-内项-┘

└------外项-------┘

师:那下面谁能来说一说这个比例当中各部分的名称呢?()

2、研究比例的基本性质及应用。(1)小游戏——我是诸葛亮

三、系列训练

1、应用比例的意义和基本性质判断3:4和6:8,:2和7:10能不能组成比例。

先一起做第一个,然后指名回答第二个。

2、把下面的等式改写成比例:(能写几个写几个)16 × 3 = 4 × 12学生写后根据学生回答教师板书:16:4=12:3

4:16=3:12 16:12=4:3

4:3=16:12 3:4=12:16

12:16=3:4 3:12=4:16

12:3=16:4

四、总结归纳

1、“比”和“比例”两个概念有什么区别?引导学生从意义上、项数上进行对比。

最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

2、比例的基本性质是什么?应用比例的基本性质可以做什么?课堂总结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。大家可以想想这句话的意思来联想一下“解比例”的做法。

板书

比例的意义和基本性质

表示两个比相等的式子:=10:6第一种—— 12:16=112 :2 16:4=20 : 5因为16×5=80 4×20=80所以16:4=20:5

第二种—— 3:4和6:8

因为3×8=24 4×6=24 3×8=4×6

所以3:4 = 6:8

《比例的意义和基本性质》教学设计 篇2

比例的意义和基本性质

1、教学内容:

科教版数学第十二册第74~76页

2、教材分析:

比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。教学内容:

教材第30.31页比例的意义和比例的.基本性质,完成第31页练一练和练习六第1~5题。

教学目标:

会判断两个比成不成比例,使学生理解比例的意义和性质。教学重点:

使学生理解比例的意义和性质。教学难点:

培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:

一、复习旧知:

1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)

除了青铜器铸造史令我们骄傲,我们国家还有闻名世界的四大发明,它们是什么?那你们知道火药是怎样制造的吗?(指名读)从刚刚的这些资料中有我们学过的数学知识吗?

2、关于比你知道哪些知识呢?(板书意义、名称和基本性质)。

二、引入新课:

(一)教学意义

1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)

2、指出:像这样表示两个比相等的式子叫做比例。

3、那么我们怎么去判断两个比能不能组成比例呢?

4、教学例1:

根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次第二次

买练习本的钱(元)2买的本数3

5、出示结果。

《比例的意义和基本性质》教学设计 篇3

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点: 理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天 第二天

运输次数 2 4

运输量(吨) 16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少? (16 : 2)

货车第二天的运输量与运输次数的比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的.积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?

《比例的意义和基本性质》教学设计 篇4

教学内容:教材第32~34页

教学目标:

1、理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。

2、培养学生自主参与的意识和主动探索精神;培养学生观察、分析、推理和概括的能力。

重点难点:

重点:理解比例的意义,探索比例的基本性质。

难点:探索比例的基本性质和应用意义,判断两个比能否组成比例。

教学过程:

一、复习旧知,做好铺垫

1、什么是比?比各部分的名称是什么?

2、求出下面每个比的比值。﹕16 3/4﹕1/8/

二、教学比例的意义

1、创设情境,激发兴趣。1)看课文情境图

2)你知道这些国旗的长与宽各是多少吗?3)测量教室国旗长与宽各是多少吗?4)教室这面国旗长与宽的比值是多少?

5)操场上国旗长与宽的比值是多少?与这面国旗有什么关系?

2、动手计算、探究比例的意义。通过计算引出什么是比例?

3、组织看书,认识名称。

4、利用新知,学以致用。还能找出哪些比来组成比例?归纳总结:

三、教学比例的基本性质

探究新知,充分验证,确定性质。

你能发现比例的'内项与外项之间有什么关系吗?小组交流汇报

师总结归纳比例的基本性质。

四、反馈巩固

1)课本做一做

2)练习6的1.4题

五、总结归纳

1)今天我们学习了什么?

2)你能比较“比”和“比例”有什么联系和区别吗?

六、布置作业

教材36页练习6的2.3题。

《比例的意义和基本性质》教学设计 篇5

教学目标:

1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。

3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。

教学重难点:

教学重点:理解比例的意义和基本性质。

教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

师生问好!

师:课前我们先进行一组口算练习,下面请##同学上台主持。

一、求比值

3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=

5 : 20= 8.8 : 1.1= 16 : 96=

二、化简比

4 : 5= 2 : 20=

32 : 4= 4 : 44=

15 : 25= 10 : 80=

师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分

(小组活动)

师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?

(学生回答)

师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?

(学生回答)

师:同学们真了不起,提出了这么多问题!

学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。

(小组活动)

师:哪个小组的'同学愿意来汇报自主学习的内容?

生汇报:我来汇报……其他小组有什么评价或补充吗?

师评价

师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?

(生答)

师:我真为你们感到骄傲,想到了这么多不同的答案!

组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

说出老师指的这个数是比例的外项还是比例的内项?

(师指生齐说)

师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成

师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?

师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。

师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示

(指1生读温馨提示)

(生合作探究)

师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。

(生汇报展示)

师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。

师:下面我们就用比例的基本性质解决拓展应用

师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?

(生谈收获)

师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》

师:下面我们进行达标检测

(生完成后)

师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。

(小组汇报)

师:全对的同学请举手,组员全对的奖励一颗小印章。

师:同学们这节课表现得真棒,继续努力,好,下课!

教后反思:

《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:

一、找准知识衔接点,为新知做好铺垫

比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

二、相信学生利用导学案自学的能力,大胆放手。

课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。

三、从情境图入手,丰富资源

从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。

四、自主探索、合作交流、探究新知。

在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。

五、练习由易到难

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。

根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。

每一次的课,总会有一些优点,但也发现了自己的一些不足:

一、采用多种评价方式

二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。

只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。

《比例的意义和基本性质》教学设计 篇6

教学过程:

一、创设情境

近段时间,我们接触了大量的比,今天这节课,我们先来请每个同学在草稿本上任写三个比,并算出比值。

请一个同学读读他写的几个比。问:老师也写了一个比(大屏幕出示6:3),说说你的三个比中有没有可以和老师这个比做好朋友的?(说说理由)

每个同学找一找,你们有和老师比值相等的比吗?(教师板书)

同桌找一找,看哪一桌也找到了这样的一对好朋友?(教师板书)

二、学习探究比例的意义

1、观察黑板上的这几组比,有什么共同的特点?(比值相等)

因为它们比值相等,我们可以用等号对他们加以连接,(教师在黑板上板书)

2、师:像这样的等式,我们给它取了一个新名字——比例。谁能说说什么叫比例?

3、数学的语言是非常精练的,打开课本,看看课本中是如何定义的?(学生读,教师板书),教师阐述:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

4、大屏幕出示教师写的另一个比,6:4,谁能为它配上一个好朋友,并写成比例。

5、练习:出示例1(大屏幕)提问,这列火车两次行驶的时间不同,行驶的路程也不相同,但这两次有没有相同的地方?我们能不能这个根据速度相同,写出一个比例。(交流)

6、大屏幕出示课本中的试一试:下面哪一组的两个比可以组成比例。(手指表示)

7、师生小结:如果判断两个比能否组成比例,最关键是看什么?

三、学习探究比例的基本性质

1、比和比例有着密切的联系,你觉得它们有区别吗?

教师小结:“比和比例的意义不同,比例中有两个比,有四个数;比是一个比,有两个数,两个比值相等的比能组成比例。”

2、比有两个数,分别叫做比的前项和比的后项,那么比例的四个数也各有名字,叫什么呢?快速浏览课本67页,找到并读一读,然后把书合拢,看谁最先合拢课本?

教师检查学生对各部分名称的掌握情况,如果写成分数形式,还能说说各自的名称吗?

6:4=3:2 =

3 、探索比例的基本性质

(1)填数。老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?

(2)猜测。学生回答,教师在方框下面板书,如1和24,2和12,……追问:“你有什么发现?把你的发现悄悄地说给同桌听一听。”

(3)验证。大家猜测说“在比例中,两个外项的积等于两个内项的积”,是不是所有的比例都有这样的规律呢,还需要我们验证。

教师组织学生用黑板上的比例和各自写的比例进行验证。

(4)小结。其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。

(5)如果比例写成分数形式,这怎么相乘?

(6)应用比例的基本性质判断下面的比例是否正确?(大屏幕出示)

(7)小结:判断两个比能不能组成比例,既可以通过计算比值来判断,也可以根据比例的基本性质来判断。

大屏幕出示:用你喜欢的方法判断下面的比例是否正确?

四、巩固提升

1、猜猜我是谁?(大屏幕出示)

2、选择题:(大屏幕出示)学生用手指表示正确选项的序号

3、(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)

谁能说出老师的秘诀?

(2)现在轮到我考你:3、4、6、8 4、6、7、9

(学生回答后让他说出判断理由)

(3)请你独立用3、4、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。

4、同学们知道,在一天的同一时间内,物体越高它在太阳下的`影子也就越长,你能运用今天学习的比例知识,想办法算出我们学校旗杆的高度吗?

五、全课小结。

谁能整理一下,这节课我们学习了哪些知识?

六、布置作业

教学目标:

1、使学生理解并掌握比例的意义和基本性质,认识比例的各部分的名称。学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、培养学生的自学能力、观察能力、判断能力及合作探究能力。

3、经历比例的意义和基本性质形成的过程,体会分析比较、归纳概括、验证的思想方法。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。