《比的应用》教学设计
此篇文章《比的应用》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《比的应用》教学设计 篇1
教学内容:教材第145页期末复习第13—16题。
教学要求:
使学生进一步认识本册教材里学过的应用题及其结构,加深理解对这些应用题数量关系的理解,认识一些应用题之间的联系和区别,能比较熟练地分析推理并正确地解答应用题,提高解答应用题的能力。
教学过程:
一、揭示课题
本学期我们学习了三步计算的应用题。这节课,我们复习本学期学过的应用题。(板书课题)通过复习,要进一步认识本册教材里的应用题的特点,更加熟练地分析应用题的数量关系,正确地确定要先算的中间问题,进一步认识一些应用题之间的联系和区别,能正确地解答本学期学过的`应用题。
二、复习三步计算应用题
1.整理思路。
这学期我们学习了许多三步计算应用题。请同学们想一想,我们学过的三步计算应用题,解答时可按怎样的方法来想要先求出的中间问题?还可以按照怎样的方法来想要先求出的中间问题
2.做期末复习第13题。让学生读题理解题意。
提问:这两题有什么相同和不同的地方?两道题的数量关系是怎样的
指名两人板演,其余学生做在练习本上。集体订正。
提问:第(2)题还可以怎样解答
学生口答,老师板书。
小结:这两题都是求两商之差的三步计算应用题,而第(2)题有一重复条件,所以也可以两步计算列式解答。
3.做期末复习第14题。学生读题,比较:两道题有什么联系和区别
第(1)题根据问题可以怎样想?根据条件又可以怎样想
第(2)题可以怎样想呢
指名学生说一说这两题的解题思路。指名两人板演,其余学生做在练习本上。集体订正。
小结:这两题都可以从条件想起,或者从问题想起。但第(1)题的已知条件、所求问题和第(2)题的互换,所以解题思路有所不同,但都有一个共同的中间问题:即6天装配电脑的台数要先求出来。
请同学们看下面一道题。
山边林场栽槐树和杉树各12行,槐树每行24棵,杉树每行30棵。栽的槐树和杉树一共多少棵
提问:这道题可以用几种方法解答
第一种方法怎样解答?(板书综合算式)这样做是怎样想的
第二种方法可以先求什么,再求什么?怎样列算式?(板书综合算式
谁来说一说,这道题为什么可以用两种方法做
四、课堂小结
这节课我们复习了什么内容?解答应用题可以用哪两种方法来分析
指出:解答应用题,可以根据条件来想能求什么问题,也可以根据问题来想需要什么条件,确定每一步算什么。在列式时,要根据条件和条件、条件和问题的联系,尽考每一步用什么方法算。在本学期学的三步计算应用题里,如果有一个条件是两个数量共同的条件,也可以用两种方法来解答。
五、课堂作业
1.期末复习第15题。要求先说一说解题思路,再列式解答。
2.期末复习第16题。要求能用几种方法就用几种方法解答。
《比的应用》教学设计 篇2
《比的应用》教学设计汇编15篇
作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么写教学设计需要注意哪些问题呢?下面是小编收集整理的《比的应用》教学设计,仅供参考,欢迎大家阅读。
《比的应用》教学设计 篇3
教学目标:
1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。
2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
3、培养学生分析、解决问题的能力,养成良好的学习习惯。
教学重难点:
体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
教学手段:
多媒体课件。
教学过程:
一、复习准备,为新课铺垫。
1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?
2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?
3、多媒体出示即时练习,指名回答,并说明理由。
二、创设情境,激趣导入。
1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?
2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?
3、出示课题:文具店。
二、自主探索,研究新知。
1、出示教学目标,了解今天的学习任务。
2、了解图意,获取信息。
(1)我们一起看看小动物们都买了什么文具呢?
小兔买了一支笔,花了2元钱。
大灰狼买了一个文具盒。
小牛买了3支铅笔。
(2)们说得真不错,除了这些以外,你还知道什么?
大灰狼花的钱是小兔的4倍。
3、小组交流,解决问题。
(1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。
(2)学生分组交流,解决问题。
(3)师生共同探讨:你是怎么想的,说说你的理由。
(4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。
(5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?
(6)小结:求一个数的`几倍是多少用乘法计算。
4、画一画。
同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?
请小朋友完成课本48页“画一画”。
(1)学生独立思考。
(2)让学生用学画一画。
(3)指名回答。
(4)你会用什么是什么的几倍说一句话吗?
5、经过刚才的学习,你能解决下面的问题吗?
(1)5的2倍是多少?
(2)3的9倍是多少?
(3)6的5倍是多少?
(4)4的8倍是多少?
三、巩固应用,拓展创新。
1、练一练1、2。
(1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?
(2)学生独立完成,师生交流。
2、练一练3。
(1)小朋友们,喜欢去旅游吗?
(2)你们去旅游都离不开什么交通工具?
(3)今天老师给同学们带来了3辆车,你能说出是什么车吗?
(4)从图中你得到了哪些数学信息?
(5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。
四、评价体验。
今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?
五、板书设计:
文具店
老黄牛花的6元钱 2×3=6(元)
大灰狼花的8元钱 2×4=8(元)
《比的应用》教学设计 篇4
教材分析
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的.商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点
教学重点:理解比的基本性质。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
《比的应用》教学设计 篇5
一、情景引入
出示一堆煤的情景图,图中标明煤的重量为1吨,一个炊事员说:“这堆煤计划烧40天。”
你们知道这句话是什么意思吗?
后来在实际烧的过程中,情况发生了变化,你们想知道发生了什么变化吗?
那么我们今天就一起来学习有关计划与实际比较的应用题
(板书课题)
二、教学新课
1、教学例2
在情景图上加上另一个炊事员的对话框:“由于改进炉灶,每天节省5千克。”
你们知道发生了什么新情况吗?
根据上面的'情景,你能编出应用题吗?
根据学生的编的应用题,选出与例2有似的问题
(1)读题,审题,分析数量关系
要求改进炉灶后,这批煤可以烧多少天。要知道哪两个条件?我们应该先求什么?
(2)你用什么方法来理解题目中的数量关系?
(3)让学生尝试解答。
2、如果把题目里的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”该怎样解答?
(1)让学生自己分析数量关系后列式解答。
(2)讲评时让学生说出分析过程。
(3)引导学生看一看例2与改编后的题目的联系和区别
3、做一做
(1)让学生独立完成做一做。
(2)指名板演,其余做在本子上,帮助学困生。
(3)集体评讲。
三、课堂练习
1、新华乡计划25天修渠道1350米,实际每天比计划多修21米,实际只要多少天就能完成任务?要求出实际只要多少天就能完成任务,必须先算出下面的哪个问题?( )怎样算?再求哪个问题?
(1)实际要修多少天?(2)实际每天修多少米?
(3)提前几天修完?
2、有一堆化肥,原计划每天生产1.8吨,20天完成,由于改进技术,每天比计划多生产0.2吨,实际多少天完成?
四、作业:
课本第51页的1——5题
板书:
有关计划与实际比较的应用题
计划每天烧煤多少千克? 1000÷40=25(千克)
改进炉灶后每天烧煤多少千克? 25-5=20(千克)
这些煤可以烧多少天? 1000÷20=50(天)
列综合算式
1000÷(1000÷40-5)
=1000÷(25-5)
=1000÷20
=50(天) 答:
《比的应用》教学设计 篇6
教学内容
教科书第54页例3,练习十二5,6,7题。
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的.比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生独立思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
返回首页