平行四边形的面积教学设计
此篇文章平行四边形的面积教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
平行四边形的面积教学设计 篇1
教学目标:
1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)
教学重点:
掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
两张格子纸,一张白纸,可变形的平行四边形
教学过程:
一、揭示课题:平行四边形(展示课件课本情景图)
师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?
生:平行四边形、长方形、圆形......
师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)
生:面积(学生回答面积后,马上追问,什么是面积?)
师:什么是面积?
生:面积就是一个图形所占平面的大小。
师:那么我们学过那些图形的面积?
生:长方形和正方形。
师:它们的面积怎么求?
生1:长方形的面积=长×宽
生2:正方形的面积=边长×边长
师板书:长方形的面积=长×宽
师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?
(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)
师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)
二、新授
师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)
生:能
师:怎么看出来?
生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。
生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。
师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!
生操作。(拿出1号方格纸,不满一格的都按照半格计算)
师:看看同学们都是怎么数的?
生:20个满格,8个半格,一共24个格,面积是24平方米。
师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?
(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)
猜测一下:平行四边形的面积可能与什么有关?
生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)
师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?
生1:底是6米。
生2:高是4米。
生3:6×4=24,所以平行四边形的面积是底×高。
师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?
(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。
生操作
出示学生的作品,介绍一下是怎么想的。
生1:用拼的方法,拼成一个长方形,再数出面积。
生2:也是拼,剪掉上面的拼下面,剪下面拼上面。
师:刚才他们都用到了一个动词,是什么?(生:拼)
师板书:拼
生4:整块简拼,移到右边。
师:拼的过程其实也是我们数学当中的平移的过程。
师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。
3、出示3号白纸,学生自己画一个平行四边形
学生操作,小组讨论。
(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)
展示学生作品
师:这样的平行四边形要怎样计算面积呢?还能数方格吗?
小组讨论,学生操作剪一剪,拼一拼。
生1:不沿高剪得
生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。
师板书:长方形的面积=长×宽。
师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?
师提醒:观察原来的平行四边形和转化后的`长方形,发现它们之间有哪些等量关系?
学生讨论
生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。
生2:这两个图形的面积是相等的。
师总结:验证成功,平行四边形的面积=底×高
(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)
师板书:平行四边形的面积=底×高
3、如果用字母S表示面积,a表示底,h表示高
你会用字母表示平行四边形的面积吗?
生:S=a×h
利用公式来计算
出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。
拓展练习:
(1)选择题:平行四边形的底是5米,高是4米,它的面积是()
A 20米B 20平方米C 18米D 18平方米
(2)出示图形(强调高和底是相对的)
(3)画出一个底是3cm,高的5cm的平行四边形。
师总结:等底等高的平行四边形面积相等,但是形状不一样。
三、拓展探究
1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程
师:那么这个平行四边形在拉成长方形时面积发生改变了吗?
学生讨论
学生1:没有改变
学生2:改变
学生辩论
师:周长一样长的平行四边形和长方形,面积不一定也一样。
四、总结
这节课我们学习了什么,回顾整堂课的过程。
用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。
预知后事,自己分晓。
板书设计
新面积不变平行四边形的面积=底×高
拼数
已学(转化)长方形的面积=长×宽
S=a×h
平行四边形的面积教学设计 篇2
教材分析
本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。
学情分析
在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。
教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点 理解公式并正确计算平行四边形的面积。
教学难点
用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。
教学准备每人准备一个长方形、平行四边形和一把剪刀。
教学过程
(一)剪剪拼拼,渗透转化。
(每生发一个长为10厘米,宽为15厘米的长方形)
师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?
师:今天我们要给长方形来变变样。
师:你有办法马上算出这个图案的面积吗?
师:为什么这么快就算出来了。
师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?
师小结:转化思想。
(二)创设情境,探究新知。
1、猜测平行四边形面积的计算方法。
师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?
2、组织探究活动。
同桌合作活动,活动前思考:
想一想,你准备把平行四边形转化成什么图形,为什么?
提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。
边操作边思考:
转化后的图形与平行四边形有什么关系?
你认为平行四边形的面积该如何计算?
4、交流探究结果
师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的`。
5、推导面积公式
师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?
小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。
长方形的面积=长×宽
平行四边形的面积=底×高
师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah
(三)练习巩固,课堂拓展
1、求下面平行四边形的面积。
2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)
3、判断:哪个平行四边形的面积是2×3=6
4、看谁算得快
5、睁大眼睛,别看花眼啦
6、书本练习十五第7题。
7、书本第83页第5题。
平行四边形的面积教学设计 篇3
平行四边形的面积教学设计【共15篇】
作为一名教师,时常需要准备好教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们该怎么去写教学设计呢?以下是小编为大家收集的平行四边形的面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
平行四边形的面积教学设计 篇4
教学内容
教材第79~81页,平行四边形的面积。
教学目标
1、知识与技能:
理解并掌握平行四边形面积的计算公式,能正确计算。
2、过程与方法:
通过操作、观察和比较,使学生运用转化的方法经历计算公式的推导过程,进一步发展学生思维。
3、情感态度与价值观:
引导学生运用转化的思想探索知识的变化规律,培养学生分析和解决问题的能力;通过动手操作,使学生感悟数学知识的内在联系,激发学习兴趣。
教学重难点
重点:掌握平行四边形的面积计算公式,并能正确运用。
难点:平行四边形面积计算公式的推导。
教具、学具准备
多媒体课件,展台,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、导出课题
课件出示图形,怎样求面积呢?生回答。数格子的方法比较麻烦,可以用割补法,通过剪、拼,转化成长方形,来求出面积。导出课题。
二、探究新知
1、动手操作,探究新知
展示学习目标,课件出示图形,怎样求这个平行四边形的面积呢?
小组合作,动手操作,寻找平行四边形面积的计算方法。
①生用平行四边形纸片和剪刀进行剪拼。
②师巡视,个别指导。
③生拼好后,指名上黑板实物投影拼得方法和过程。
④师课件演示剪拼过程.
得知平行四边形的面积和拼成的长方形的面积相等。
2、引导推导平行四边形面积计算公式。
师:给你一个平行四边形水池,求面积,还能去剪么?
生:不能。
师:那想一个什么方法来求平行四边形的面积呢?
小组讨论。观察拼出的长方形和原来的平行四边形,你能根据它们的面积相等和长方形的面积公式推导出平行四边形面积计算公式么?
多媒体课件演示整个推导过程。
①拼成的长方形的面积与原来平行四边形面积相等,
②拼成的长方形的长与原来平行四边形的底相等,
③拼成的长方形的长与原来平行四边形的高相等,
因为长方形的面积 =长×宽,所以平行四边形的`面积=底×高
用字母表示平行四边形的面积公式S=ah
师强调:高必须是和底对应的高。
[设计意图:让学生参与学习新知的全过程,充分发挥学生的主体作用,让学生通过自主探索,合作交流,“创造”出新知,发展学生的能力,让学生体验到成功的喜悦]
三、应用公式,解决问题
1、独立完计算,课件出示图形。
S=8×5=40平方厘米 S=12×7=84平方米
2、提高练习
一个停车位是平行四边形,它的面积是15㎡,底是6m。它的高是多少?
h=S÷a=15÷6=2.5m
答:它的高是2.5m。
3、拓展延伸
用木条做成一个长方形框,把它拉成一个平行四边形,周长和面积有变化吗?
(周长不变;底不变,高变小,所以面积变小。)
[设计意图:通过多种形式的练习,巩固所学的知识,解决生活中的数学问题,加强数学与生活的联系。]
4、全课总结
师:说一说这节课,你学会了什么?
板书设计
长方形的面积 = 长 × 宽
↓ ↓ ↓
平行四边形的面积=底 × 高
S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式 就 是S = ah
平行四边形的面积教学设计 篇5
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1.知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2.过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3.情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的`高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
平行四边形的面积教学设计 篇6
一、教学目标
1.结合具体情境,通过操作活动,经历推导平行四边形的面积计算公式并交流方法的过程。
2.理解和掌握平行四边形面积计算公式,会运用计算相关图形的面积并解决一切实际问题。
3.通过观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重、难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。教学难点:平行四边形面积计算公式的推导。
三、教具学具:
自制长方形框架,平行四边形,小黑板四.教学过程
(一)情境导入
1.师:请同学们看老师手上的框架,这是什么图形?(长方形)长方形有什么特点呢?哪条是长?哪条是宽?
它的长是5厘米,宽是3厘米,它所围成的长方形面积是多少?
(板书:长方形的面积=长×宽)用字母表示S=ab
2.师:注意看,接下去老师要变魔术了哦!如果捏住这个长方形的一组对角,像这样往外拉(教师演示学生看),变成什么图形了?生:平行四边形。
师:平行四边形有什么特点?哪条是底?哪条是高?高有几条(无数条)
3.让学生拿出学具,感受一下长方形变成平行四边形的过程。 (板书:)
4.(学生观察主题图)提问:你们看到了哪些图形?
(长方形、三角形、平行四边形、圆形、梯形、正方形)
提问:在这么多的图形里,有哪些图形出现在了老师的小魔术里?
(长方形、平行四边形)提问:那这两个图形分别在哪里呢?
(两个大花坛)
5.(出示两个花坛)我们已经学会计算长方形的面积,如果要比较这两个花坛的大小,怎么办,谁有办法?(引导学生说可以计算平行四边形的面积)引导学生说出可以用数格子的`方法。(板书:计算平行四边形面积的方法)
师:好,这节课我们就来学习一下平行四边形的面积要怎么计算?(板书课题:平行四边形的面积)
(二)合作探索
1.用数方格的方法计算平行四边形面积。
⑴将课本翻到87页,不足一格的按半格算,数一数,这个长方形和平行四边形的面积由几个小格组成?(板书:数格子)(都是24格)
⑵同桌对子讨论,观察比较两个图形的关系,并完成表格,一个方格代表1㎡。提问:你发现了什么?平行四边形的底和长方形的长、平行四边形的高和长方形的宽它们有什么关系呢?
(生可能回答)生1:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等。
生2:它们的面积也相等。
生3:平行四边形的面积可以用底乘高来计算。
师:非常好。接下来我们就来验证一下平行四边形的面积计算公式是不是底乘高。
(板书:平行四边形的面积=底×高)
2.操作验证
⑴提问:不数方格,能用其它方法来证明它们面积相等吗?(一张平行四边形的纸,一把三角尺和一把剪刀)
⑵提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。(板书:割补法)
⑶对子两人一小组,商议如何通过画一画、剪一剪等方法来进行操作研究;两人合作操作。有困难的对子可以请老师帮忙;比一比哪一对同学能快速解决问题。
2
思考:a、什么改变了?
b、什么没有发生改变?
c、原平行四边形和拼出的长方形有什么联系?(出示关系图)⑷展示学生作品:不同的方法将平行四边形变成长方形。提问:观察拼出的长方形和原来的平行四边形,你发现了什么?(平行四边形的面积=底×高)
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S=ah(边说边板书)
(三)巩固练习
1.出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。(板书:S=ah=6×4=24㎡)利用例题推出:h=S÷a a=S÷h
2.已知平行四边形的面积是16.8平方米,高是4米,底是多少米?16.8÷4=4.2(米)
一块平行四边形钢板,底是15米,高是底的1.2倍。这块钢板的面积是多少平方米?
15×1.2=18(米)15×18=270(平方米)
四、课堂小结
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
老师魔术中长方形和平行四边形的面积相等吗?请同学们看课本90页第八题,回去思考,我们下节课来进行讨论。
五、板书设计
平行四边形的面积计算平行四边形面积的方法:长方形的面积=长×宽1、数格子平行四边形的面积=底×高2、将平行四边变成长方形——割补法S:面积a:底h:高字母表示:S=ah例一:a=6m h=4m S?ah?6?4?24(m2)
返回首页