三角形的面积教学设计
此篇文章三角形的面积教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
三角形的面积教学设计 篇1
教学目标
1、通过画图、观察、思考和计算,引导学生进一步体会三角形面积与它等底、等高的平行四边形的关系。
2、让学生看图计算面积或先在图中测量必要的数据后计算面积,并应用公式解决简单的实际问题、发展空间观念。
教学重难点
应用公式解决简单的实际问题
课前准备
小黑板和多媒体展台
教学过程
一、复习导入
1、口算:书P(17)、4
(口算卡片出示)
2、复习计算公式:
(1)三角形面积的计算公式是怎样的?字母表达式呢?
(2)为什么要“÷2”?拼成的平行四边形的两个三角形有什么关系?(板图)
(3)拼成的平行四边形的底和高与三角形的底和高有什么关系?
(4)中一个三角形的面积与平行四边形的面积有什么关系?
3、揭题“三角形面积的计算”。
二、探究新知
1、完成练习三P(17)、5
(小黑板出示)
(1)、问:平行四边形的面积计算公式是怎样的?平行四边形的.面积与什么有关?
(2)、观察、思考:图中哪几个三角形的面积是平行四边形面积的一半?为什么?(可采用小组讨论的方式)
(3)、汇报、交流,师适当提示小结。
2、完成练习三P(17)、6
(1)鼓励学生独立画图。
(2)思考:
A、每个小方格表示1平方厘米,你还知道些什么?
师生活动
思考与调整
B、画出的三角形的面积是9平方厘米,那么三角形的底和高必须满足什么条件?
C、要使底和高的乘积是18,底和高分别是多少呢?
(3)、师适当小结。
3、补充习题(小黑板出示)
有一块三角形菜地。底是20米,高是18米,王师傅打算每平方米种4棵大白菜,这块菜地一共可收成多少棵大白菜?
(1)、让生试做。
(2)、让生说说解题思路。
(3)、集体订正。
4、完成练习三P(18)、9
问:测量时要注意些什么?
明确:红领巾要拉直,高的确有讲究,一次不够测量要注意,要有人记录数据。
5、完成练习三P(18)、10
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
6、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
三、巩固深化
全课小结。
作业:练习三P(18)7、8
教学得与失:
课题
梯形面积的计算
三角形的面积教学设计 篇2
教学内容:
人教版五年级上册84----85页
教材分析:
三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
学情分析:
学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:教法:
演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
三角形卡片、多媒体课件
教学过程:
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的'面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
三角形的面积教学设计 篇3
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:理解三角形面积计算公式,正确计算三角形的面积.
教学难点:理解三角形面积公式的推导过程.
教学过程:
一、激发
1.出示平行四边形
提问:
(1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)
师总结:平行四边形面积=底×高
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式。
1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)
分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)
3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
4、用直角三角形推导
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)
5、用锐角或者钝角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
(3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
问题:通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半
6、归纳、总结公式。
(1)通过以上实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
③这个平行四边形的`底等于三角形的底。
④这个平行四边形的高等于三角形的高。
7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)
三角形面积=底×高÷2
8、教学字母公式。
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
(二)、应用
1、教学例题:
红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?
①读题。理解题意。
②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要“除以2”?
2、完成做一做
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)填空
(1)一个三角形的底是4分米,高是30厘米,面积是( )平方分米。
(2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是( )平方分米。
(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )
(4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。
(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。
(二)判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)
2、等底等高的两个三角形,面积一定相等。 (√ )
3、两个三角形一定可以拼成一个平行四边形。 ( ×)
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()
(5)两个面积相等的三角形可以拼成一个平行四边形。(×)
(6)等底等高的两个三角形,面积一定相等。( √ )
(7)三角形面积等于平行四边形面积的一半。(× )
(8)三角形的底越长,面积就越大。(× )
(9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )
五、作业:85页做一做和练习十六第1、2、3、4题
板书设计:
三角形面积的计算
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
所以三角形面积=底×高÷2
S=ah÷2
三角形的面积教学设计 篇4
三角形的面积教学设计
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。优秀的教学设计都具备一些什么特点呢?下面是小编整理的三角形的面积教学设计,欢迎阅读与收藏。
三角形的面积教学设计 篇5
教学内容:
苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题
教学目标:
1、 理解和掌握三角形的面积计算公式。
2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重、难点:
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
教具学具准备:
1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。
一、导入课题:
1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?
[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的`推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]
二、新授
(一) 实验一:剪
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)
(2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)
师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)
[评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]
三角形的面积教学设计 篇6
教学目标
及重点难点
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学准备(含资料辑录或图表绘制)
板书设计
教后记
教和学的过程
内容教师活动学生活动
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的.比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。
返回首页