返回首页
智远网 > 短文 > 教案 > 正文

乘法的分配律教学设计

2025/12/31教案

此篇文章乘法的分配律教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

乘法的分配律教学设计 篇1

教学内容:

教科书书第54的例题以及55页的“想想做做”。

教学目标:

1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。

2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重点和难点:

发现并理解乘法分配律。

教学准备:

多媒体课件。

教学过程:

一、复习旧知,作好铺垫

同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)

今天这节课,我们要来研究乘法的另外一个运算定律。

二、联系实际,探究规律

1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!

2.课件例题情景图。

(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)

(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?

指名说出算式,教师随学生回答板书:

(65+45)×5 65×5+45×5

让回答的两名学生说说自己的想法。(即先算的是什么。)

第一个算式:先算买一套衣服用多少元。

第二个算式:先算买5件夹克衫和5条裤子各用多少元。

(3)猜一猜:这两个算式结果会怎样?(相等)

(4)计算验证。

师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。

集体交流,指名汇报计算过程。

(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)

3.探索、发现规律。

(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。

同桌讨论交流,指名汇报,鼓励学生自由发表意见。

(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)

(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。

(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?

指名举例,计算算式结果,得出等式,教师板书。

师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)

学生汇报验证的结果。 教师结合学生回答板书三个等式。

问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。

(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)

(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。

展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。

表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)

师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。

三、应用规律,巩固练习

1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。

学生自己判断。集体交流时指名说说是怎么判断的?

第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。

问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?

2.掌握得真不错!下面打开书看55页“想想做做”第1题。

学生独立填写后,指名汇报。

讨论第2小题时问:两个乘法中相同的'乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!

3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)

问:图上给我们提供了长方形菜地的什么信息?

你会用两种不同的方法计算它的周长吗?

(1)学生完成在自备本上,指名板演两种不同的方法。

(2)集体交流,出示:(64+26)×2 64×2+26×2

师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?

师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。

4.完成“想想做做”第4题。

出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?

比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。

学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?

(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)

这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)

指名说计算过程,教师用课件展示简算过程。

小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。

5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?

学生独立完成在自备本上,投影展示不同的算法。

观察这个等式,你有什么想告诉大家吗?

师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!

四、总结回顾

问:今天这节课,你有什么收获?

五、课堂作业

完成“想想做做”第5题。

教后反思:

乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。

在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。

当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。

乘法的分配律教学设计 篇2

教学目标:

1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。

2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。

3、渗透“从特殊到一般”的数学思想和方法。

教学重点:指导探索乘法分配律。

教学难点:发现并归纳乘法分配律。

教具:课件

教学过程:

一、创设情境,生成问题。

师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。

出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?

师:你能用几种方法解答?

生1:(72+28)×2

生2:72×2+28×2(板书两个算式)

师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。

生计算。

师:请选择第一个算式的同学,说出你的计算结果。

生:长方形的周长是200米。

师:谁选择的第二个算式,结果又是多少呢?

生:我算的结果也是200米。

师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?

生:可以

板书:(72+28)×2=72×2+28×2

出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?

师:这道题你有能用几种方法解答?结果是多少?

(生计算,汇报)

生1:我列的算式是32×64+18×64,结果是6400元。

师:有没有用不同的方法的?

生2:我列的算式是:(32+18)×64,结果也是6400元。

师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。

板书:(32+18)×64=32×64+18×32

师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?

生:可能有规律。

师:真的有规律吗?

【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】

二、探索交流,归纳规律。

师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。

师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?

生:不能。

师:那该怎么办?

生:找更多的这样的等式。

师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。

(生举例验证)

汇报:

生1:(3+2)×5=3×2+2×5

师:你计算过了吗?

生1:算了,两边的结果都是30.

师:很好,其他同学还有吗?

生2:(30+50)×5=30×5+50×5

生3:(24+76)×2=24×2+76×2

……

师:同学们都找到了这样的式子吗?

生:是。

师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?

(生思考)

生:老师,我能。

师:你说说看。

生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。

师:同学们,你听明白了吗?

生:明白了。

师:那你能用这个思路说说你举得例子吗?

生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4

……

师:现在我们再来思考,有没有可能像这样的式子两边不相等?

生:不可能,两边的结果一定相等。

【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】

师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?

生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。

生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。

生3:(A+B)×C=A×C+B×C

生4、(a+b)×c=a×b+a×c

生5、(○+□)×◎=○×◎+□×◎

师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?

生:第三个用小写字母的那一个。

师:你为什么觉得这个好?

生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。

师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。

(通过读式子,完善语言表达)

【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】

三、巩固应用,内化提高

1、火眼金睛,判对错。

56×(19+28)=56×19+28

64×64+36×64=(64+36)×64

32×(3×7)=32×7+32×3

2、思维敏捷,连一连。(把结果相同的两个式子连起来)

①(42+25+33)×26 ①20×25+4×25

②36×15-26×15 ②(66+34)×66

③66×66+66×34 ③42×26+25×26+33×26

④38×99+38×1 ④(36-26)×15

⑤(20+4)×25 ⑤38×(99+1)

师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。

生1、我算的是(20+4)×5=20×25+4×25,结果是600.

师:你是把两边的式子都计算了吗?

生1:没有,我是算的右边的那个式子。

师:你为什么没用左边的式子计算呢?

生1:右边的那个式子计算起来简单。

师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。

生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。

师:大家来观察这个式子,这是我们发现的'那个乘法分配律吗?

生1:不是.

生2:是,就是把它给倒过来用的。

师:是的,这是乘法分配律的逆应用,也可以用来简化计算。

生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。

师:看了这个等式,你有什么想说的?

生:我们刚才做的都是带“+”的,可是这个是“-”。

师:看来我们的乘法分配律还有新的内涵呢。

补充板书:(a-b)×c=a×c-b×c

师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?

生4:我算了,结果是2600,算的是左边的那个式子。

师:看了它,你有没有想说的?

生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。

师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?

生:能。

3、合理选择,算一算。

312×12+188×12

101×87

(53+47)×23

【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】

四、拓展延伸,引发思考。

这节课我们共同来研究了乘法分配律,除法有没有分配律呢?

板书:(a+b)÷c=a÷c+b÷c ?

同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。

【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。】

乘法的分配律教学设计 篇3

教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

教学重点:指导学生探索乘法的分配律。

教学难点:乘法分配律的应用。

教学准备:课件、口算题、例题、练习题等。

教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

教学流程:

一、设疑导入

师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

生:可以使计算简便。

师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

二、探究发现

1。猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

师:这道题算得怎么不如刚才的快啊?

生:它和前面的题目不一样。

师:好,我们来看一下它与前面的题目有什么不同?

生:前面的题都是乘号,这道题既有乘号还有加号。

生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

生:(10+4)×25=10×25+4×25。

师:为什么这样算哪?

生:我是根据乘法分配律算的。

师:你是怎么知道的?你知道什么是乘法分配律吗?

生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2。验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

3。结论。

生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的.意义。)

师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

(a+b)×c=a×c+b×c

师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

三、练习应用

(生练习应用定律。)

师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

四、总结

师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

反思:

本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

一、主动探究,实现亲身经历和体验

现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

二、多向互动,注重合作与交流

在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

乘法的分配律教学设计 篇4

【教学目标】

1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

2、能根据算式各自的特征,选择使用、灵活计算。

3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!

4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!

【教学重点】

深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

【教学难点】

1、能根据算式各自的特征,选择使用、灵活计算。

2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!

【教学过程】

环节

教师活动

学生活动

设计意图

一、回顾引入

1、我们昨天学了……,请写出依据(字母表达式)

2、看着这个字母表达式,你想说点什么?

1、学生一起回答省略部分

2、学生各自在自己草稿本上写出字母表达式

3、让学生充分表达!

以忆引练,为接下来的练习做知识铺垫准备!

二、开展练习

分别出示:

1、基础题

(1)选择题

(2)填空题

(3)用简便方法计算

1、口答选择题

2、笔写填空题

3、比赛方式完成简便计算

1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。

2、训练准确简便计算能力,也是巩固新课掌握的计算方法

小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。

2、提高题(计算各题,怎样简便就怎么算)。

1、先标出你认为能够简便计算的题

2、动笔计算,并验证自己的`观察

养学生观察力、细心力、分析力、和计算灵活性。

小结:一看、二想、三算

3、拓展题(能快速算出下面各题吗?)。

用作选做题:做你会计算的题

训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要

小结:变看似不能简便计算为能够简便计算

三、全课总结

1、涵盖小结内容

2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。

乘法的分配律教学设计 篇5

教材分析

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的'生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。

教学目标

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算

重点难点

1、 指导探索乘法分配律。

2、 发现并归纳乘法分配律。

方法指导

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

预设流程

激趣导入

(约3分钟)

一、创设情境,提出问题:

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

精讲点拨

(约8分钟)

(二)、观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

师:用字母如何表示乘法分配律?

测评总结(约12分钟)

三、巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)×3=()×3+()×3

15×(40+8)=15×()+15×()

78×20+22×20=( + )×20

66×28+66×32+66×40=( + + ) ×40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56×(19+28)=56×19+56×28

(18+15)×26=18×15+26×15

(11×25) ×4= 11×4+25×4

(45-5)×14 =45 ×14 -5 ×14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25 39×8+39×6-4×39

4、拓展提高

你能用乘法分配律解决这道题吗?

86×101

四、说一说,今天我们研究了什么?你有什么收获

板书设计

乘法分配律

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

乘法的分配律教学设计 篇6

—乘法分配律教学设计与反思

设计说明

当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标

1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。

2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表

达数学规律的意识,进一步体会数学与生活的联系。

3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一:创设情境导入

提问:长方形的面积怎样求?

指明回答

这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)

学生动手操作

(课件出示两个长方形组合的动画)

二:自主探索,交流合作

1、交流算法,初步感知

提问:请同学们自己求一下新长方形的面积。

教师巡视,观察学生不同的解法

反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导

(课件出示两种解法)

谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?

学生自己写一写,请学生说一说,教师相机板书。

2、比较分析,深入体会

提问:算式左右两边有什么相同和不同之处呢?小组内交流。

反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。

设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。

组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。

3、规律符号化,揭示规律

提问:像这样的算式,写的完吗?

我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。

反馈引导学生用不同的方式来表达规律。

小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)

三:实践运用,初步理解。

1、想想做做1

学生自主完成,组织交流。

第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是

12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)

2、想想做做2

自主完成,组织交流。

第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个

74,也就是74.

第四小题要和想想做做题1的第二小题做对比。

四:拓展延伸,内化新知

再次出示两个长方形纸片,提问:如何比较这两个长方形的大小

学生反馈,引导说出可以重叠比较。学生动手实践

再问:那么大长方形比小长方形大的'面积是那一块?

让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。

学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。

学生反馈,交流。课件出示两种解法。

谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。

再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。

谈话:这个规律用字母如何表示呢?自己试着写写看。

学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。

想想做做题5

课件出示,学生读题。

问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。

问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对

乘法分配律延伸的理解与内化。

反思:

这节课我是分三个层次来教学。

第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。

第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。

最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。