六年级数学教案
此篇文章六年级数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。
六年级数学教案 篇1
一、教学目的:
1、通过活动,使学生知道数学知识与生活有着密切的联系,能有意识的综合运用所学的知识解决简单的实际问题,学会与他人合作,培养组织活动的能力。
2、进行有关的思想教育,如教育学生要有礼貌,注意安全,爱护果树等物品。
二、教学过程:
课前准备:课前已把表格发给了每一位学生,学生已对果园产生了兴趣,通过已经分好组的计划,让学生自己去收集有关的信息,例如:学校到果园实践购物及费用方面,有了解大家爱吃什么,卖多少,每种物品的价钱及一共要多少元等等,这些都要学生通过自己小组的讨论而定。
X月X日:全班师生乘车来到柳埠X果园进行参观,路上,大家兴致勃勃,纷纷询问各自所带的物品及自己小组的活动计划。
以下为教学片断的梗概:
师:现在我们已经到了美丽的果园,进了果园之后,要讲礼貌,注意安全,要爱护果树,保护好果园的环境。(在农民与学生的交流中,教师也要记录有关的数据这样自然的融入到班级中去。)(电脑设计果园,教师在其中)
小A:农民伯伯,您好,我们的果园这么大,它到底大鸡长有多少米,宽有多少米呢?
农民:果园可大了,长由174米,宽有126米。
教师:那它到底占地多少公顷?(及时引发学生思考)
(学生沉默片刻)
小B:大约有22100平方米,我是用174第六以126得出的。
教师:大家同意吗?
小C:不对,老师问的是多少公顷,而不是多少平方米,应该是2.21公顷。
教师:这次大家同意吗?
全班:同意。
小D:果园这么大,能栽多少棵树呢?
农民:我们这里有1278棵果树。
小E:这么多,那一棵苹果树能产多少千克苹果呢?
农民:大约一棵树能产50千克。
教师:农民伯伯用汗水换来的丰硕的`果实,一千无苹果按市场价能卖多少元?(教师融入其中,能充分调动学生的积极性)谁能帮农民伯伯计算一下他一年能挣多少钱?
(学生争先恐后的想在农民伯伯这里展示一十自己,有的议论,有的笔算,有的干脆用上了计算器)。
小F:我们知道了,现在市场价每千克苹果1.60元,照这样计算,农民伯伯一年的收入大约是102240元。
六年级数学教案 篇2
教材说明
综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。
“合理存款”活动共由以下四个部分组成。
1.明确问题。
本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。
2.收集信息。
明确问题后,需要收集与该问题相关的信息。教材中呈现了通过去银行咨询以及查阅相关规定的方式获得的信息:(1)人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率等。(2)教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。(3)国债也是免征利息所得税,有三年期和五年期的……
3.设计方案。
根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
4.选择方案。
从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。
教学建议
1.这部分内容可用1课时进行教学。
2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的`利率和相关规定。
3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。
4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。
5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)20xx年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。
6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:(1)教育储蓄存六年。(2)先买三年期国债,到期后再买三年期国债。(3)先买三年期国债,到期后再存三年期教育储蓄。(4)先买五年期国债,到期后再存一年期教育储蓄。在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。
1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以20xx年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。
2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。
六年级数学教案 篇3
六年级数学教案集锦15篇
在教学工作者实际的教学活动中,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!下面是小编为大家收集的六年级数学教案,欢迎阅读,希望大家能够喜欢。
六年级数学教案 篇4
教学内容:冀教版《数学》六年级上册第92、93页。
教学目标:
1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。
2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。
3、感受数学在解决问题中的价值,培养数学应用意识。
课前准备:一个蒙古包图片
教学过程:
一、问题情境
1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。
师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?
生:蒙古包。
师:对,蒙古包。看,老师带来了一张蒙古包的图片。
图片贴在黑板上。
师:观察这个蒙古包,你都想到了哪些和数学有关的问题?
2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。
师:如果要计算蒙古包的占地面积,怎么办?
生:测量出蒙古包的直径,就能计算出它的占地面积。
师:对。测量出直径就能求出它的面积。大家来观察这个图片,这个蒙古包的直径好测量吗?
生:不好测量。
师:对,从外面没法测量。从里面测量一方面屋子里有东西不好量,另外也不容易测量准确。测量直径不行,还有其它方法吗?
生:测量出周长。
师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。
板书:周长18.84米。
二、解决问题
1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。
师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。
学生讨论。
师:谁来说说已知圆的周长是多少,怎样求圆的面积?
生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。
学生说不完整,教师参与交流。
师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。
学生独立计算,教师巡视并指导。
2、交流计算的过程和结果,重点说一说是怎样算的。教师板书出计算的过程。 师:哪位同学说说你是怎么解答的?先算的什么,再算的什么?
生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)
学生说的同时,教师板书:
蒙古包的半径:
2×3.14×r=25.12
r=25.12÷6.28
r=4
蒙古包的占地面积:
3.14×42=50.24(平方米)
如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。
三、课堂练习
1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。
师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。
学生独立完成,教师个别指导。
师:谁来说一说你的做法,这个蓄水池的占地面积是多少?
生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)
师:看第2题,求花池的面积。自己解答。
交流时,请学习稍差的学生回答。
答案:3.14×2×r=18.84
r=3
3.14×32=28.26(平方米)
2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。 师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.
学生完成后,指名汇报。答案:
3.14×2×r=100.5
r=16
3.14×162=803.84(平方厘米)
3、“练一练”第4题。结合书中的插图,弄清活动要求,然后让学生课下完成。师:读一读第4题.谁知道树的横截面指的'是什么?
生:就是把树锯断后的圆面。
师:树木的周长相当于这个横截面的什么?
生:周长。
师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。
学生读题。
师:用同样长的铁丝,分别围成一个正方形和一个圆。围成的图形哪个面积大?就这个问题,谁想发表一下自己的意见?
学生可能出现不同意见,都不做评价。
四、问题讨论
1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。
师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。
学生合作研究,教师参与指导。
2、全班交流,重点说一说思考的过程和举例计算的结果。使学生认识到周长相同的平面图形中,圆的面积最大。 师:谁来说一说你们假设铁丝的长度是多少,计算的结果是什么?
学生可能出现不同的假设。如:(1)假设铁丝长1米。
正方形的边长:1÷4=0.25=25(厘米)
正方形面积:25×25=625(平方厘米)
圆半径:100÷2÷3.14≈16(厘米)
圆面积:3.14×162≈803(平方厘米)
结论:圆的面积大
(2)假设铁丝长2米。
正方形的边长:2÷4=0.5=50(厘米)
正方形面积:50×50=2500(平方厘米)
圆半径:200÷2÷3.14≈32(厘米)
圆面积:3.14×322≈3215(平方厘米)
结论:圆的面积大
(3)假设铁丝长4米。
正方形的边长:4÷4=1(米)
正方形面积:1×1=1(平方米)
圆半径:4÷2÷3.14≈0.64(米)
圆面积:3.14×0.642≈1.29(平方米)
结论:圆的面积大
3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。
师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。
生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。
六年级数学教案 篇5
教案点评:
采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。
教学目标
1.使学生认识圆,知道圆的各部分名称.
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.
3.初步学会用圆规画圆,培养学生的作图能力.
4.培养学生观察、分析、抽象、概括等思维能力.
教学重点
理解和掌握圆的特征,学会用圆规画圆的方法.
教学难点
理解圆上的概念,归纳圆的特征.
教学过程
一、铺垫孕伏
(一)教师用投影出示下面的.图形
1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?
2.教师指出:我们把这样的图形叫做平面上的直线图形.
(二)教师演示
一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)
二、探究新知
(一)教师让学生举例说明周围哪些物体上有圆.
(二)认识圆的各部分名称和圆的特征.
1.学生拿出圆的学具.
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)
教师说明:圆是平面上的一种曲线图形.
3.通过具体操作,来认识一下圆的各部分名称和圆的特征.
(1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次.
教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
(圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的
长度都相等;有无数条直径,所有直径的长度也都相等.
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍.
六年级数学教案 篇6
教学内容:教科书第68页例1和练习十一第1题。
教学目标:
1、综合运用统计知识,学会从统计图中准确提取统计信息,并作出正确的判断和简单的预测。
2、理解统计图中各个数据的具体含义,培养同学仔细观察的习惯。
教具准备:多媒体电脑,投影仪。
教学过程:
一、情景引入
同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌吗?
今天我们就去彩电市场看看各种彩电的市场占有率吧!(出示教科书第68页例1的扇形统计图)
二、探究交流,总结规律
1、小组研讨、交流。
根据这幅统计图,你们了解到哪些信息呢?A牌彩电是市场上最畅销的彩电吗?
根据提出的问题,让同学在小组内交流、讨论。同学可能会发生两种不同的看法:一局部会认为A品牌最畅销,而另一局部则认为A品牌不是最畅销的,从而引起认知抵触。
2、引导释疑。
在同学讨论交流的基础上,教师提问:请大家仔细观察,说说统计图里“其他”局部可能包括了哪些信息呢?
可让同学分别说说“其他”的具体含义,从而明确“其他”里面可能含有比A牌更畅销的彩电品牌。
3、小结。
这幅统计图提供的`数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出A牌彩电最畅销这样的结论。
引导同学认识到:在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息动身,不要单凭直观感受轻易下结论。
返回首页