返回首页
智远网 > 短文 > 教案 > 正文

《3的倍数的特征》教学设计

2026/01/06教案

此篇文章《3的倍数的特征》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《3的倍数的特征》教学设计 篇1

教学目标:

1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。 2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点: 3的倍数的数的特征的归纳过程。 教具准备:小黑板、课件、小棒等。 教学时数:一课时

教学过程:

一、 复习导入。

为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

下面的数,哪些是2的倍数?哪些是5的倍数。 364、420、515、736、1028、905

让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)

为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

二、 猜想验证。

由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

三、 体验新知。

由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。

3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21 ……

并引导学生进行观察发现:3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的`和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。

四、归纳总结。

在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就 3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

五、实践应用。

当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。 练习1:课本第19也做一做。 1,下列数中3的倍数有: —— —— 14 35 45 100 332 876 74 88

(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)

练习2:①第21页(5、6题),在基本练习的基础上我增设了3道发展题。

②把数娃娃送回家。题目如下:

这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

练习3:第21页(7题)

7、在口里填一个数字,使每个数都是3的倍数。 口7 4口2 口44 65口 12口1

(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)

六、拓展延伸

为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。

板书设计:

3的倍数的特征

一个数的各位上的数的和是3的倍数,这个数就是3的倍数。

《3的倍数的特征》教学设计 篇2

一、教学目标设置:

依据一:《课程标准》

1、总体和学段目标中的描述:

(1)体验从具体情境中抽象出数的过程,掌握必要的运算技能。

(2)初步学会与他人合作解决问题,尝试解释自己的思考过程。

2.内容目标中的描述:

掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征.

依据二:《教师教学用书》中的单元目标的具体描述。

使学生通过主探索,掌握2,5,3的倍数的特征。

依据三:教材和学情

教材分析:

教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么,3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。教材提供了一张100以内的数目表,引导学生发现3的倍数特征。学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。在初步得出结论的基础上,教师应进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。需要注意的是在日常的练习与评价时,一般只要求学生判断100以内的数是否是3的倍数。因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。

学情分析:

学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

鉴于以上分析,本节课教学重难点:

经历3的倍数的特征的探索过程,掌握3的倍数特征。

教学目标:

1.通过观察、小组交流等活动,经历探索3的倍数的特征的过程,掌握3的倍数的特征,会判断一个数是不是3的倍数。

2.培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。

3.学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。

二、教学评价的设计:

1、在小组内说一说3的倍数的特征。

2、对同学板演情况进行正确判断,并能独立完成课堂练习题。

三、教学过程:

一、生活激趣,导入新知

1、新闻导入:1月28日讯,郑州市实验小学多功能大厅内掀起了一场爱心捐款的热潮。学生们以班为单位,老师们以级部为单位纷纷走到捐款箱前,把一颗颗滚烫的爱心、一句句殷切的祝福,献给该校五年级七班一名身患再生障碍性贫血的同学张森。活动场面热烈,真情感人,整个大厅内爱心涌动,给人无限的温暖。本次活动全校师生共捐款85332元,用于张森同学的检查和治疗。

此次爱心捐助活动,充分体现了实验小学师生团结互助的高尚情操和关爱帮助困难学生的人文精神,践行了“一方有难,八方支援”的传统美德。广大师生纷纷表示,希望张森同学在全体师生的关心支持下坚强地战胜疾病,早日康复,重返实验小学温暖的大家庭!

2、让学生分别判断85332是不是2、5的倍数,并说明理由。

结合学生的回答,板书:2、5的倍数看个位。

如果将这些钱平均支付3次张森同学的手术费,不计算能判断每次手术费得到的钱数是不是整元数吗?

你猜想什么样的数是3的.倍数?

同意他的猜想吗?(同意)

他的猜想对不对呢?我们来继续研究。

出示1~99的数表,让学生找出3的倍数。

思考一下这位同学的猜想是否正确?

学生从不同角度举例否定上面的猜想。

那请同学们继续观察,3的倍数的个位可以是哪些数字?

要判断一个数是不是3的倍数,能不能只看个位?(不能)

究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题)

【设计意图:同学们看到自己捐款的照片和过程出现在新闻报道中,顿时会情绪高涨起来。这不仅能让学生们的感情再次升华,更能让学生们感知到数学就在我们身边。】

二、活动体验,探究新知

1.自主生成,体验交流

我猜每个同学都有自己的幸运数字,如果把你们小组内的幸运数字凑在一起,都会组成哪些数呢?

小组合作要求:让学生先写出能组成的数(两位数、三位数或四位数都可以),并判断每个数是否是3的倍数,再写出自己组的发现。(具体内容略)

学生合作探索,教师巡视参与。

谁来代表你们小组汇报研究的情况?

你能把刚才同学们交流的数进行分类吗?说明你分类的理由。

同学们的思维可真开阔呀,想出了那么多分类的方法,真不简单!今天,让我们先走进3的倍数中去,看看它们蕴藏了什么样的数学的奥秘?

(在实物投影上展示)几组前面小组合作中自主生成的3的倍数。

小组讨论,教师巡视参与。

组织全班交流。(略)

小结:在用数字组数的过程中,①数字排列的顺序变了;②组成数的大小变了;③组数用的卡片上的数字没变;④卡片上的数字和没变。

小组展示各组数字之和。

在用数字组数的过程中,数字的和为什么没变?

请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

我的猜想是一个数的数字和是3的倍数的数,这个数就是3的倍数。(板书略)

【设计意图:让学生通过幸运数字组数,尝试分类,发现某一组数字组成的数要么都是3的倍数,要么都不是3的倍数,再次激发学生的好奇心。然后让学生带着疑问讨论,理解一个数各位上的数字和的含义和算法,并对3的倍数的特征作进一步的猜想。】

2.举例验证,建构模型

要想知道这个猜想对不对,可以怎么办?

谁能任举一例并说明具体的验证方法?

师生共同讨论验证,并引导学生体会验证方法。(略)

学生在小组内举例验证。

汇报验证结果(在实物投影上展示),形成共识,得出结论,总结出规律。

【设计意图:让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程。验证是本课教学的一个难点。这一过程,不仅让学生初步学会了举例验证的方法,而且体现了辩证唯物主义的思想。】

3.巩固练习。

(1)下面哪些数是3的倍数?

29、84、45、54、108、180、801

①先出示29、84这两个数,让学生判断。

②出示45、54让学生判断,根据45是3的倍数,可以直接判断54也是3的倍数。

③同时出示105、150和501,引导学生先判断105是不是3的倍数,再直接判断150和501是不是3的倍数。

(2)不计算,你能很快说出哪几题的结果有余数吗?

48÷397÷3342÷3

(3)在下面每个数的□里填上一个数字,使这个数是3的倍数。

①4□②3□5③12□④□12

学生在4□的□中填出2、5、8后,师:请你们观察填的3个数字,能发现其中的规律吗?

第②、③题的过程同上。

第④题,学生练习后,师:为什么这题只有3种不同的答案?

【设计意图:题目设置的层次性、趣味性符合了学生的认知规律,也有利于提高解题的灵活性。】

三、学以致用,回归生活

1.从生活中来,回生活中去。

现在你能很快判断85332这个数是不是3的倍数了吗?(学生判断,并说明理由)

2.数学小故事。

淘气和笑笑是一对好朋友。放假时两人交换了联络电话,笑笑告诉淘气:“我家的电话号码是一个3的倍数。”可淘气不慎忘记了末尾的数字2338503(),只隐约记得是个非零偶数。想一想,淘气和笑笑还能联系上吗?请同学们课下讨论一下,帮淘气想想办法吧。

【设计意图:从生活中来,再回到生活中去。让学生体会到数学与生活的联系,感受数学的作用,对培养学生的实践能力有很大的帮助。】

四、总结全课

今天这节课你有收获吗?3的倍数的数有什么特征?我们是怎么探索出这个规律的?

师生共同总结探索过程。(略)

《3的倍数的特征》教学设计 篇3

1.教材地位及作用

《3的倍数特征》一课主要是让学生理解3的倍数特征,能判断一个数是不是3的倍数。本节课是在学习了倍数与因数及2、5的倍数特征的基础上来进行本节课的教学的。本节课主要让学生在猜想中,通过动手圈画百以内的数表,在观察、分析、比较、验证的过程中发现规律。本节课的教学是以后学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础,这样有利于学生感受数学知识之间的联系,体会前后知识学习的必要性。同时,也发展了学生的数感。

2.教学目标

[1] 经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

[2] 让学生猜测、验证3的倍数的特征。并在活动中能够积极思考,发表自己的观点,提出问题,解决问题。

[3] 让学生在活动中感受学习数学的兴趣,发展学生分析、比较、猜测、验证的能力。

3.教学重点、难点

理解3的'倍数的特征;发现3的倍数的特征的这一规律。

[学情分析]

学生已经掌握了2、5的倍数特征,他们会利用2、5的倍数特征进行迁移来寻找3的倍数的特征,由此产生认知冲突,激发了学生想要探究的愿望,学生会在观察、比较、分析及教师的指导、验证中得出新的结论,体验成功的喜悦。

[教学策略]

1.以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“2、5的倍数特征”产生的负迁移,直接抛出问题,激活学生的原有认知,学生自然而然将2、5的倍数特征迁移到3的倍数特征的问题中来,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。学生很快进入了问题情境,猜测、否定、反思、观察、讨论,学生会渐渐进入探究者的角色。

2.以问题为中心组织学生展开探究活动。突出学生的主体地位,依据学生的年龄特点和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律,得出结论,培养学生的探索意识和分析、概括、验证、判断等能力。

[教学过程]

一、从原有认知出发,激发学生求知欲。

师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数又会有什么特征呢?谁能来猜测一下?

生1:个位上是3、6、9的数是3的倍数。比如33、66、99。

生2:反对,个位上是3、6、9的数不一定是3的倍数,比如13、16、19就不是3的倍数。

生3:个位上是0、1、2、3、……9 的数有的是3的倍数,有的不是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数有什么特征呢今天我们就来共同研究。

二、观察比较、得出结论。

(1)师:在百以内的数表中圈出3的倍数。

(2)组织学生观察、交流,并呈现已圈出3的倍数的百以内的数表。

师:请观察这个表格,你发现3的倍数有什么特征?把你的发现与同桌交流一下。学生交流后组织全班交流。

生1:我发现10以内的数只有3、6、9是3的倍数。

生2:我发现不管横着看还是竖着看,3的倍数都是隔两个数一出现。

生3:我全部看了一下,刚才前面那位同学的猜想是不对的,3的倍数个位上是0-9这10个数字都有可能。

师:个位上的数字没有什么规律,那十位上的数字有什么规律吗?

生:没有什么规律,1至9这些数字都出现了。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列,很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1,个位数减1组成的数与原来的数有什么相同的地方?

生:我发现3所在的那条斜线,另外两个数12和21的十位与个位上的数字加起来都等于3。

师:这是一个重大发现,其它斜线呢?

生1:我发现6所在的那条斜线上的数,两个数字加起来的和都等于6。

生2:9所在的那条斜线上的数,两个数字加起来的和等于9。

生3:我发现另外几列,边上的30,60,90两个数字的和是3,6,9,另外的数两个数字的和是12,15,18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3,6,9,12,15,18等,这个数就一定是3的倍数。

师:实际上3,6,9,12,15,18等数都是3的倍数,所以这句话还可以怎么说?

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

(3)师:刚才是从100以内的数中发现了规律,得出了3的倍数的特征。如果是3位数甚至是更大的数,3的倍数的特征是否也相同呢?请大家找几个数来验证一下。

(4)生自己写数并验证,然后交流,得出了同样的结论。

三、巩固应用,深化提高

1.圈出3的倍数

75、43、655、888、7431、5916、4012

2、在□内填上一个数字,使这个数是3的倍数,你有几种方法?

127□ □3□ 11□2

四、小结反思

今天,大家自己探究了3的倍数的特征,请你们回忆一下,我们是用什么方法发现这个规律的?(生回答)

附:[板书设计]

3的倍数的特征

12 1+2=3 15 1+5=6 18 1+8=9

21 2+1=3 24 2+4=6 27 2+7=9

33 3+3=6 36 3+6=9

…… ……

一个数各个数位上数字之和是3的倍数,

这个数就一定是3的倍数。

《3的倍数的特征》教学设计 篇4

建构主义认为,学习是学生建构自己知识的过程,而学生的自主建构离不开教师的有效引领。教师能否适时采用适宜的方法引导学生探索,决定学生自主构建的效果。因此,教师不仅要为学生提供自主建构的机会,也要认识到自身对学生建构的促进意义,并采用行之有效的方法及时给学生提供积极的引导。作为知识载体的学习材料是学生获得感性经验的基础和前提,材料的选择、加工和使用,在学生自主建构新知过程中有着重要意义,更是教师开展有效引领的关键点。有时,呈现材料方式的调整和变化会成为有效引领的“金钥匙”,帮助学生走出认知的困顿和迷途,实现新知的自主建构。

如“3的倍数的特征”,学生自主建构的难度较大。其原因,一是容易产生定势。受先前2、5倍数特征的影响,会造成方法的负迁移,从而简单地判定某个数是不是3的倍数只要看个位,即如果个位是0、3、6、9,那么该数就是3的倍数,反之就不是。二是特征包含的要素多。3的倍数的特征比2、5倍数的特征复杂、需要关注的范围更广。

研究3的倍数特征,不仅要看每一个数位上的数以及各个数位上数的和,还要分析和与3之间的关系。三是没有现成的经验可用。由个位数的特点确定倍数的特征,学生有这方面的.经验,但是从各位数的和上把握倍数特征的经验缺乏,所以学生自主探索,发现特征的可能性较小。就第一个问题,找到解决办法容易。一般来说,我们会采用“欲擒故纵”的策略纠正学生的认识。

先让学生根据2、5倍数的特征猜想3的倍数的特征,并通过质疑引导学生举例否定猜想,排除只看个位数的判定办法。但是就后两个问题则很难找到有效的引领对策。

【教学片断一】

师:3的倍数究竟有怎样的特征呢?看老师这儿有一个数——123,是3的倍数吗?

师:老师还可以将这个数变一变,变出很多个3的倍数,信吗?

(随即交换各个数位上数的位置,写下1

32、213、2

31、312、321等数,引导学生逐个判断。)

师:奇怪了,这些数怎么都是3的倍数呢?观察这些数,你发现了什么?

生:都是由

1、2、3这3个数组成的。

生:??

师:为了便于我们观察和发现,咱们请计数器帮忙,看看能不能有新的发现。师:在计数器上拨出上面各数,会不会?各需要用几颗珠子?(依次出数,逐个鉴定珠子总数)师:数拨完了,你有没有什么发现?

生:用到的珠子总数相同,都是6颗。

师:我们发现当所需的珠子总颗数是6时,是3的倍数。那么,珠子总数还可以是几呢?想一个珠子总数,任意组一个数,并判断它是不是3的倍数。(学生自主活动)

师:发现了什么?

生:珠子总数是3的倍数,这个数就是3的倍数。生:各位数的和是3的倍数,这个数就是3的倍数。从以上教学过程看,采用拨珠的办法对发现特征有一定的作用。学生通过观察珠子总数不仅联想到了各位数的和,还能根据和形成各位数的和是3的倍数的猜想。但是仔细分析后,很容易发现这种引导方式的存在很大的缺陷。学生对各位数和的替代物——珠子总数的关注并不是自发的,而是教师直接告知的,这就极大地削弱了学生建构的成分。换句话说,这样的教学方式只是从表面上解决了自主建构的问题,却并没有触及本质,因而不是真正意义上的自主建构。

那么,除了拨珠的方法还有没有其他的引导方式呢?众所周知,采用对百数表中各个3的倍数特征的观察、分析,进而发现共同特征的策略,虽然符合研究特征的一般规律,但由于各个对象过于分散,而且各个数位上数的和不尽相同,不利于学生聚焦,进而发现各数的共同的本质特点。因此,常常会把百数表的研究作为感知材料,而不作深入探究。然而,如果对百数表内各数作进一步观察、思考和梳理,就会发现根据不同的和可以将3的倍数分成具有相同特质的几组:

3、12、21、30;

6、15、24、33、42、51、60;??如果就对这几组数进行观察并求同,就比较容易发现共同点,从而获得3的倍数特征的正确猜想。这是重要的信息,利用好了就能实现特征的自主建构。那么能否利用好这个教学资源,引导学生主动发现3的倍数特征呢?

感知组合律表明,空间上接近、时间上连续的事物,易于构成一个整体为人们所清晰地感知。如果改变这些学习材料的呈现方式,使之符合组合律提出的空间和时间的要求,那么就能实现有效引领。在教学时,我设计了如下的呈现方式。

【教学片断二】

师:3的倍数究竟有怎样的特征呢?你们说该怎么研究?

生:找一些3的倍数观察。

师:3的倍数有很多,我们就列举40以内的数吧。生:

3、6、9、12、15、18、21、24、27、30、33、36、39。 师:观察这些数,你发现了什么?

生:??

师:这样写数发现特征有点困难,我们换一种写法,看看能不能有所发现。师:1~10当中有哪些数?10~20当中呢?20~30、30~40当中呢?(边说边板书)3

9 12

18 21

27 30

39

师:发现了什么?

生:我发现第一列各位上数的和都是3,第二列是6,第三列是9,第4列是12。

生:各位上数的和是3的倍数。

生:一个数是3的倍数,它各位上数的和是3的倍数。

以上案例中,在学习材料呈现时做了三个方面调整和变化。首先,只出示3的倍数,不出示非3的倍数,使学生排除非3倍数特征的干扰,集中注意力研究3的倍数特征。其次,去掉百数表的外框,使各数重新组合成为可能。再次,改变从左往右的顺序,将数按固定的结构分组,并依次按从上至下的顺序排列,使得各位数和具有相同特点的自然上下对应,构成一个纵向观察的整体。同样的学习材料,不一样的呈现方式,带来了不一样的引领作用。没有改动之前的学习材料不能为学生提供任何的探究和发现特征的线索,而改动后的学习材料有着明确的导向,使学生主动发现3的倍数与各位数的和的特征有关,从而主动建构倍数特征。

以上教学实践表明,引导学生自主建构3的倍数的特征并,关键是要进行有效的引领。要实现有效引领,途径有很多,其中学习材料的选用不容忽视。根据心理学研究成果,深度挖掘学习材料的价值,打破原有的思维定势,适当改变材料的呈现形式是提高引导针对性和有效性的有力举措,能为学生自主探索新知扫除障碍,使学生走出建构受阻的困境,进而推动新知的自主建构进程。

《3的倍数的特征》教学设计 篇5

教学内容:3的倍数的特征(P19及P20题4~5)

教学目标:

① 使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

② 能应用3的倍数的特征,会判断一个数是否是3的倍数。

③ 培养学生观察、分析、概括、推理能力。

④ 让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

教学重点:探求3的倍数的特征。

教学难点:会判断一个数是否是3的倍数。

教学过程:

一、课前预习:

自学内容 P19 做一做,P20的T4-11

1、判断下面哪些数是2的倍数,哪些数是5的倍数?

18,25,46,85,100,325,180,90

2、说一说2、5的倍数它们有什么特征呢?

3、既是2的倍数又是5的倍数的数有什么特征?

4、你们猜一猜3的倍数有什么特征呢?

尝试练习

1、试着完成P19的做一做练习

2、判断下列数哪些是3的倍数?

33 34 27 180

69 390 405 300

二、汇报展示:

同学们,你们只要随便说一个数,我就能很快说出它是不是3的倍数,你们相信不?

1、学生猜想:

(1)个位是3、6、9的`数是3的倍数;

(2)个位是2、5的数是3的倍数;

(3)个位是1、2、3、5、6、8、9的数是3的倍数;

(4)个位是0-9的数是3的倍数

……

2.验证猜想。反馈3的倍数的特征。

(1)思考并回答

①什么样的数是3的倍数?

②要想研究3的倍数的特征,应该怎样做?

(2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

1×3=3 5×3=15

2×3=6 6×3=18

3×3=9 7×3=21

4×3=128×3=24

(3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

(4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?

我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)

得出结论:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

验证:下面各数,哪些是3的倍数呢?

210,54,216,129,9231,9876543204

(5)小结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

2.练习:完成P19做一做

三、反馈检测:

1完成P20题4~5

2(1)在□里填上适当的数,使它是3的倍数

3□5□1646□400□

(2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

□7 3□ □06 □0 □8 1□□

(3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

四、板书设计

3的倍数的特征

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

五、附检测题

1、用1、2、9三个数字排成能被3整除的三位数有____

2、按要求,在下面的 ( )里填上一个不同的数字。

(1)是2的倍数:3 ( ) 3 ( ) 3 ( )

(2)是5的倍数:20 ( ) 20 ( ) 4 ( )5

(3)是3的倍数:4 ( ) 8 ( )6 4 ( )6

《3的倍数的特征》教学设计 篇6

教学内容:义务教育教科书五年级下册第二单元第10页例2.

教学目标

知识与技能:掌握3的倍数的特征,能正确判断一个数是否是3的倍数。

过程与方法:通过自主探究的活动,培养学生的推理、观察、概括能力。

情感态度与价值观:渗透猜想,验证的思想,使学生感受到生活中蕴藏着丰富数学知识。

教学重点:认识并掌握3的倍数的特征。

教学难点:通过概括3的倍数的特征掌握一定的数学思想和方法。

教学准备:微视频、微练习题

教学流程:

一、 导入:

昨天同学们已经看了微课视频,微课视频主要内容是什么?你学会了什么?还有那些不懂得的地方?你有什么问题想要在课堂上解决的?

这节课我们带着大家的问题一起再学《3的倍数特征》,板书课题。

二、新授课

我们已经掌握了2和5的倍数的特征,根据什么来判断的?

同学们猜测一下:什么样的数是3的倍数呢?

1、个位上是3、6、9的数是3的倍数吗?

你能举出相反的例子吗?(学生举例)

2、圈数探索:(下面请大家拿出百数表,在百数表中圈3的倍数。快速浏览一遍所圈的数,说说3的倍数个位上可以是哪些数字?

3、提问:像判断2和5的倍数那样,只看个位上的数字来判断3的倍数,行不行?

4、换位探索:引导发现3的倍数与数字的顺序无关。

(1)老师发现一个有趣的现象:百数表中有些数,比如27和72,都是3的倍数,像这样的数你还能说出几对来吗?这说明什么?(如果一个数是3的倍数,那么调换各个数位上数的顺序,同样还是3的'倍数。)

(2)再出示几个3的倍数(三位数),交换各数位上数的顺序,让学生检验是不是还是3的倍数。

到底怎样的数是3的倍数呢?

(3)观察百数图3的倍数的特点,斜着看,你有什么发现?

(4)学生汇报发现规律斜着看,3的倍数各位上数的和是3的倍数。

(5)看书验证(师:看书,验证自己的看法是否正确,并一边看书一边划出关键的词语。)

5、教师小结:一个数各位上数的和是3的倍数,这个数是3的倍数。

三、微练习题讲练。

四、巩固练习

1、在下面每个数的□里填一个数,使这个数有因数3,它们各有几种不同的填法?

4□ 3□5 □12 76□ 198□

2、能力练习

判断下面的多位数能否被3整除,并说说你有什么好办法?

33336669999 12345678987654321

3、把表中9的倍数涂上颜色,并思考:9的倍数都是3的倍数吗?反过来呢?

五、全课小结,延伸新知。

1.同学们通过昨天微课视频的学习和今天这节课的学习,你学会了什么?你又有什么收获?

2.请大家应用今天的探究方法,课后研究其它整数的特征。

六、布置作业。

板书设计:

3的倍数特征

3的倍数特征:各位上数的和是3的倍数,这个数就是3的倍数。