返回首页
智远网 > 短文 > 教案 > 正文

《平行四边形的面积》的教学设计

2026/01/07教案

此篇文章《平行四边形的面积》的教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《平行四边形的面积》的教学设计 篇1

【合集】《平行四边形的面积》的教学设计15篇

作为一名专为他人授业解惑的人民教师,可能需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。一份好的教学设计是什么样子的呢?以下是小编帮大家整理的《平行四边形的面积》的教学设计,欢迎大家分享。

《平行四边形的面积》的教学设计 篇2

教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。

教具学具课件、平行四边形卡片、剪刀、三角板、直尺等。

教学模式:“我能行”四步教学法。(详见文后注)

教学流程:

课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?

预设:老师的年龄是多少?教几年级?

师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

师:想得真好,许老师就是(30)岁。

师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

一、情境导入,确定目标

师:1.在数学课堂上哪些地方用到了“转化”?

预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

生:演示方法。

3.师:为什么把它拼成一个长方形呢?

预设:学过长方形面积的计算,而且能够拼成长方形。

这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

4.刚才的图形“转化”过程,什么变了,什么没变?

5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

(2)我会用平行四边形面积公式解决实际问题。

【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

二、互动展示,生成问题

师:1.你猜一猜平行四边形的面积会与什么有关?

预设:长方形、正方形、底、高、夹角、相邻的边等。

2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

3.请带着问题自学。(课件)

4.四人小组交流一下你是怎样“转化”平行四边形面积的。

【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

三、启发思路,引导归纳

师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

2.平行四边形的面积怎么算?

3.板书:平行四边形的面积=底×高

4.你是怎样推导的?说一下你的操作过程。

5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

7.这个平行四边形与剪拼的长方形之间有什么关系?

预设:平行四边形的'面积与长方形的面积相等(板书)

8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

四、练习检测,拓展链接

1.练习检测卡一题。

2.课件:判断、选择题、口答列式。

3.练习检测卡二、三题。

4.谈谈你对这节课的收获,好吗?

拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

板书设计:

(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

《平行四边形的面积》的教学设计 篇3

设计理念:

利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教学内容:

五年级上册第79-81页《平行四边形的面积》。

教学目标:

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。

学情分析:

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。

教学过程:

课前活动:

1、游戏:小小魔术师。教师出示不规则图形。

你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)

2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。

一、故事引入,激起质疑

1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。

一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?

阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”

巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”

2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?

我们说的毛毯的大小指的是毛毯的什么?

以前我们学过哪些图形的面积,计算公式是什么?

3、这节课我们继续研究面积:平行四边形的面积。(板书课题)

以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。

设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。

二、动手操作,探究方法

(一)猜想

请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?

根据学生猜测,板书:可能出现(底×高或底×邻边)

根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条

(二)验证

1、到底哪种猜测正确呢?这就需要我们进行验证才知道。

2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?

3、静静地想,想好了吗?

(三)操作

1、探究活动步骤:

想好了,我们来看“深入探究活动”,分三步进行:

第一步:动手操作。为了剪拼的'规范,建议大家用铅笔和三角板先画一画,再剪拼。

第二步:结合剪拼过程,思考这三个问题:大声读出来!

深入探究学习卡

①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?

②剪拼后的图形与原来的平行四边形相比,什么不变?”

③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系

第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。

明白了吗?比比看,哪个小组进行的又快又好!开始吧!

2、学生活动,教师参与。

请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。

3、汇报交流

(1)汇报剪拼过程。

一边演示,一边说说你的剪拼过程。

(2)指导规范叙述:

(板书:沿高剪平移)并追问:为什么要沿高剪?

(四)推导

1、汇报探究的三个问题。

结合剪拼过程,谁来说说你对这三个问题的思考?

①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。

②剪拼后的长方形与原来的平行四边形相比,面积不变。

③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。

2、汇报交流:面积不变,长---底,宽---高

追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?

请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。

师板书:平行四边形的面积=底×高

长方形的面积=长×宽

设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。

(五)结论

1、证实猜想,得出结论:平行四边形的面积=底×高是正确的

2、用字母表示:S=ah

三、解决问题,拓展延伸

1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?

2、你能算出芸芸家这块菜地的面积吗?

题上给了这么多信息,应该怎么选择呢?试试看,你一定行!

看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!

3、接下来大家要加油噢!看,向你挑战!怕不怕?

下面两个平行四边形,它们的面积一样大吗?

小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?

四、全课小结,完善新知:

现在大家看:哪块毛毯的面积大呢?

你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!

同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!

设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。

《平行四边形的面积》的教学设计 篇4

教学内容:

人教版义务教育课程标准实验教科书五年级上册

教学目标:

1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

2、能力目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗转化的思想方法。

3、情感目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法—转化与等积变形。

教具准备:课件,平行四边形纸片,剪刀

教学过程:

(一)创设情景,引出课题

1、小故事:阿凡提买毛毯。故事是这样的:一天聪明的阿凡提去买毛毯,同学们看一下这两条毛毯是什么形状的?这时迎面走来了非常小气、贪婪的巴依老爷一眼就看中了这两条毛毯。阿凡提突然计上心来,就对巴依老爷说:“如果你选出比较大的一块来,我就把2块都送给你,如果选错,你就把欠长工的钱都还给他们。”巴依老爷上去就抓住了长方形的那块。同学们认为那一块大?(生猜测)要想知道哪一块大,求出它们的什么就行了。长方形的面积会求那平行四边形的面积呢?

2、既然我们已经知道了如何计算长方形的面积,那平行四边形的面积如何计算呢?今天这节课我们一起就一起来研究平行四边形的面积。(板书课题)

(二)动手实践,探究新知

1、复习两图形

师:在比较它们的面积之前我们先回想一下:你都知道长方形和平行四边形的什么知道?(回忆长方形的面积、平行四边形的底和高)

2、数方格比较两个图形面积的'大小。

师:还记得以前我们是如何学习长方形的面积的吗?那下面我们把这两个图形都放到方格纸上比一比。

(1)出示图形并提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写课本80页表格。

(3)反馈汇报数的结果。(用数方格的方法得到的两个图形的面积是一样大的)

(4)提出问题:如果平行四边形很大,用数方格的方法很麻烦,能不能开动脑筋找到一种简便的方法来计算平行四边形的面积?

(5)让学生观察这两个图形,并提出思考问题:如果我们把平行四边形转化成过去学过的哪个图形,就可以根据已学过的图形的面积来计算出它的面积了?

2.运用剪拼法,验证猜想。

(1)提出要求:利用手中的工具,动手剪一剪,拼一拼,想办法把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的把平行四边形变成长方形的方法,每组派代表去讲台上演示不同的方法,将自己的成果展示在黑板上。让学生注意观察并思考以下问题:

a.为什么要沿高剪开?

b.拼成的长方形和原来的平行四边形相比,他们的面积变了吗?

c.拼成的长方形的长与原来平行四边形的底有什么关系?

d.拼成的长方形的宽与原来平行四边形的高有什么关系?

(4)思考的同时,教师利用课件演示平行四边形转化成长方形的过程。

(5)交流反馈,引导学生得出:

A. 拼成的长方形和原来的平行四边形相比形状变了,面积没变。

B.拼成的长方形的长等于原来平行四边形的底。

C.拼成的长方形的宽等于原来平行四边形的高。

(6)根据长方形的面积公式s=ab,进而得出平行四边形面积公式:平行四边的面积=底x高,用字母表示为S=axh

(7)活动小结:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示为S=ah。

(8)同桌之间互相说一说剪拼过程。

(三)分层训练,理解内化

(1)基础练习:课本81页例1

(2)综合练习:你能口算出这些平行四边形的面积吗?

(3)扩展练习:比较四个平行四边形的面积。

(四)课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

板书设计:

平行四边形的面积

长方形面积 = 长 × 宽

平行四边形的面积 = 底 × 高

S = a h

《平行四边形的面积》的教学设计 篇5

长方形的面积=长×宽

平行四边形的面积=底×高

S=a×h

S=ah或S=ah

课后记:

第二课时

教学内容:

平行四边形面积计算的练习(P82~83页练习十五第4~8题。)

教学要求:

1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2.养成良好的审题习惯。

教学重点:

运用所学知识解答有关平行四边形面积的应用题。

教具准备:

展示台

教学过程:

一、基本练习

1、平行四边形的面积是什么?它是怎样推导出来的?

2、.口算下面各平行四边形的面积。

(1)底12米,高7米;

(2)高13分米,第6分米;

(3)底2.5厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

(1)生独立列式解答,集体订正。

(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:

先求这块地的面积:250×780÷10000=1.95公顷,

再求共收小麦多少千克:7000×1.95=13650千克

(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

与⑵比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

2.(1)练习十五第5题:

1.4厘米

2.5厘米

a、你能找出图中的两个平行四边形吗?

b、他们的面积相等吗?为什么?

c、生计算每个平行四边形的面积。

d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

(2)练习十五6题

让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)

3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。

7m

分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

三、课堂练习

练习十五第7题。

四、作业

练习十五第4题。

课后记:

第三课三角形面积的计算

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

理解三角形面积公式的推导过程.

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

教学过程

一、激发

1.出示平行四边形

1.5厘米

2厘米

提问:

(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的`?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

二、指导探索

(一)推导三角形面积计算公式.

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

《平行四边形的面积》的教学设计 篇6

教学内容:

小学数学五年级上册第87——88页

教学目标:

知识与技能目标:

理解并掌握平行四边形面积计算公式。

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

教学重难点:

(1)教学重点:平行四边形面积计算公式的推导和运用。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

教学用具:

1、课件

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

学情分析:

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

教学过程:

一、激情导课

(大屏幕出示校园情景图)

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

1、探究平行四边形面积计算公式。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

二、民主导学

任务一:自主探究平行四边形的面积计算方法。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的`面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)

长方形的面积=长×宽

平行四边形的面积=底×高

(对小组进行评价)

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

(对小组进行评价)

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

任务二:解决问题

出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结

1、计算下面每个平行四边形的面积。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!