解方程教学反思
此篇文章解方程教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。
解方程教学反思 篇1
方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。
五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:
旧教材:
x+48=127
x=127-48
依据运算之间的关系:一个加数等于和减另一个加数。
新教材:
x+48=127
x+48-48=127-48
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。
可是,当学到用方程解决实际问题时,却出现了状况。
新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的.方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。
如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。
我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。
如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”
合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。
如此一来,学生怎么能充分体会方程顺向思维的优越性?
如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?
我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。
解方程教学反思 篇2
本节主要教学目标是使学生通过结合具体实际问题的分析与解决,导出形如ax±b=c和ax±bx=c形式的方程,并结合原有旧知——等式的性质推导出解法步骤,同时利用这些方程来解决一些实际问题,丰富学生的解题方法,提高学生解决问题的能力。
通过几课时的教学与练习,学生在掌握方程解法上没有问题,说明学生对等式的性质掌握的比较扎实。但在运用方程解决一些实际问题时,部分学生表现出缺少一定的分析习惯和缺乏一定的分析能力,造成在解决问题(特别是一些例题的变式题)时产生较多错误。
通过前后练习的比较、观察,发现产生上述问题的主要原因在于学生在练习时偏重模仿和记忆,缺少具体分析的意识。从而造成在碰到一些变式题时就明显缺少解题策略,学生在读题后首先想到的不是去思考题中有怎样的数量关系,而是在记忆中极力搜索“这个问题以前有没有讲过?或跟哪个问题是一样的?”等旧痕迹。然而这些变式题的解答难就难在它与例题有密切的联系,但又有区别。如果学生不能找到其中的区别和练习,光靠模仿和记忆,那就很难正确解答了。因此,在教学中教师要注意学生重模仿轻分析的学习方式,在练习中要加强数量关系的分析,注重学生对解题思路的表述。教师要强调学生读题后先分析并写出等量关系,每个实际问题的解答过程中都要设计等量关系的分析与交流,从潜意识中使学生重视起对问题的分析与判断。一开始学生可能在分析、判断等量关系时还会模仿例题的形式,因此在学生对基本类型有了一定的感悟后,要有针对性的出现变式题让学生来解决,使其在认知冲突中进一步感悟先分析、判断等量关系的重要性。但同时教师也要十分清楚的认识到寻找等量关系对于课改后的六年级学生来讲,并不是一件容易的事,除了缺少一定的意识外,更重要的是缺乏一定的分析能力。
产生这种情况的原因主要有两个,一是在新教材的编排中,在六年级前很少涉及甚至没有安排过等量关系寻找的内容。正是由于教材中忽视了这方面内容的安排,也就引起了第二个原因——教师和学生都忽视了寻找等量关系能力的培养。等到六年级要大量具体涉及到时,就发现学生很不适应了。如何提高学生寻找题目中等量关系的能力,就成了教学的一个重点,也是一个难点。为了提高学生等量关系的分析能力,除了如前所述要加强意识培养外,还应在具体方法上加以指导。而用线段图来表示题目中的条件和问题,是一种非常有效的提升学生分析、判断等量关系的方法,教材在例题分析中就先借助了线段图来分析,从而帮助学生找出题中的.等量关系。在实际教学中我深深地体会到了画线段图来表示条件和问题,从而形象的表示出等量关系的有效性。同时,在教学中不能因为问题简单或赶进度而忽视画线段图表示条件和问题的环节。一开始学生可能由于以前缺少一定的训练而显得有些不适应,但经过几次的努力后,学生就能很快提高作图能力,从而有助于等量关系的寻找。
综上所述,在列方程解决实际问题的教学中,教师首先要注意学生学习方式的培养,从偏重模仿和记忆中逐步纠正过来,逐步建立具体分析的意识。其次是要培养学生用线段图表示题目中条件和问题的能力,借助线段图的表示形象的表现出相关的等量关系,提高学生寻找等量关系的能力,从而进一步提高学生列方程解决实际问题的能力。
解方程教学反思 篇3
一、认知基础的“顽固性”
心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的'等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。
以前教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,比较两种思路:第一种方法是把未知数x优先从背景中筛选出来,依据四则运算各部分之间的关系求出x的值;第二种方法用“结构性观点”去看待方程,着眼于其所表明的等量关系,体现了方程思想的本质,较好地解决了中小学关于方程解法的衔接问题。《数学课程标准》也明确要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。那么,教材编排的价值是不容置疑的,即不能因为学生思维的轻车熟路,而忽视新知的教学,忽视学生数学思想的进一步提升。利用关系式这种方法解方程书写较少,形式简单,但教学时总碰到差生不理解关系式也记不住关系式,因此在解方程时因想不起关系式而不会解。这几星期的教学,我发现孩子们还是比较喜欢学的,学得也不错,教材利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。教材又通过天平平衡原理过渡到等式的性质,从而利用等式的性质教学解方程,使得解方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,学得不错,但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。我发现用等式性质教这类方程,比较麻烦,学生学起来有一定难度。
二、两种方法形式上的相似引发学生思维的惰性
第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。
方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。
解方程教学反思 篇4
这次教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的.过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。
尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。
在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。
解方程教学反思 篇5
解方程教学反思
身为一名优秀的人民教师,教学是重要的工作之一,对学到的教学技巧,我们可以记录在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编整理的解方程教学反思,仅供参考,希望能够帮助到大家。
解方程教学反思 篇6
在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。
本节内容教材提供了与生活密切相关,且有一定思考和探究性的问题,所以在教学中我让学生综合已有的知识,经过自主探索和合作交流尝试解决,提高学生的思维品质和进行探究学习的能力。主要有以下几个成功之处:
1、让学生自主交流方法,充分展示学生不同层次的思维,互相学习,互相促进,从而创建平等、轻松的学习氛围。
在出示了例7后,我提示学生解决此类问题可以自己画出草图,分析题目中的等量关系,学生根据题意很快可以画出图形,然后,我让他们找出题目中可以写等量关系的'条件,根据条件写出文字的等量关系。在这个环节有的学生遇到了困难,于是,我就让他们互相讨论,通过讨论,大部分学生可以写出等量关系,我再让会的学生说出理由。在这个教学过程中,学生互相学习,互相促进,轻松地学会了知识。
2、让学生自主归纳,总结方法,尊重学生的个性选择,学生的集体智慧更符合学生自己的口味,比教师说教更易于被学生接受。
例7的解答还有一种更简单的方法,我让学生观察图形,在图形上做文章,还是让他们自主探索,讨论,很快有一部分学生想到了把图形中的道路平移到一边的方法,这样就把种植面积集中起来,方程就好列了。这时,我就让学生上来讲述方法。学生用自己的语言讲述,这样其他人接受起来更快一些。并且,学生还总结此类问题的解决方法――将图形平移,在以下练习的几道题中都能得心应手的解答了。由此可见,通过自己思考学到的知识能够灵活应用,且掌握的好。
在这节课的教学中也存在一些不足之处,教材中在例题之前设计了一个应用,在解决这个问题上耽误了时间,延误了下面的教学,导致设计的练习题没有做完,所以在下次教学时,这个应用问题只让学生列出方程即可,不必在解答上花费时间。另外,练习设计过于单一,只涉及到了例题这种类型的练习,变式练习题少,所以,在下次教学时,要设计两道不同题型的题目。
由这节课的教学我领悟到,数学学习是学生自己建构数学知识的活动,学生应该主动探索知识的建构者,而不是模仿者,教学应促进学生主体的主动建构,离开了学生积极主动的学习,教师讲得再好,也会经常出现“教师讲完了,学生仍不会”的现象。所以,在以后的教学中,我要更有意识的多给学生自主探索、合作交流的机会,更加激发学生的学习积极性,使学生在他们的最近发展区发展。
返回首页