返回首页
智远网 > 短文 > 教案 > 正文

高一数学教案

2026/01/13教案

此篇文章高一数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。

高一数学教案 篇1

【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

本文题目:空间几何体的三视图和直观图高一数学教案

第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

教学重点:画出三视图、识别三视图.

教学难点:识别三视图所表示的空间几何体.

教学过程:

一、新课导入:

1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

用途:工程建设、机械制造、日常生活.

二、讲授新课:

1. 教学中心投影与平行投影:

① 投影法的`提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

讨论:点、线、三角形在平行投影后的结果.

2. 教学柱、锥、台、球的三视图:

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.

③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

(试变化以上的三视图,说出相应几何体的摆放)

3. 教学简单组合体的三视图:

① 画出教材P16 图(2)、(3)、(4)的三视图.

② 从教材P16思考中三视图,说出几何体.

4. 练习:

① 画出正四棱锥的三视图.

画出右图所示几何体的三视图.

③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

5. 小结:投影法;三视图;顺与逆

三、巩固练习: 练习:教材P17 1、2、3、4

第二课时 1.2.3 空间几何体的直观图

教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

教学重点:画出直观图.

高一数学教案 篇2

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的'良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案 篇3

一、课标要求:

理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

二、知识与方法回顾:

1、充分条件、必要条件与充要条件的概念:

2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

5、化归思想:

表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

6、数形结合思想:

利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

三、基础训练:

1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3、 若 是实数,则 是 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

四、例题讲解

例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

(1) 是这个方程有实根的充分不必要条件

(2) 是这个方程有实根的必要不充分条件

(3) 是这个方程有实根的充要条件

(4) 是这个方程有实根的充分不必要条件

A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

(2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

变式:a = 0是直线 与 平行的 条件;

例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

五、课堂练习

1、设命题p: ,命题q: ,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由.

六、课堂小结:

七、教学后记:

高三 班 学号 姓名 日期: 月 日

1、 A B是AB=B的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、 是 的` ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3、 2x2-5x-30的一个必要不充分条件是 ( )

A.-

4、2且b是a+b4且ab的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分又不必要条件

6、若命题A: ,命题B: ,则命题A是B的 条件;

7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

8、方程mx2+2x+1=0至少有一个负根的充要条件是 ;

9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

10、已知 ,求证: 的充要条件是 ;

11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

(1)方程有两个正根的充要条件;

(2)方程至少有一正根的充要条件.

高一数学教案 篇4

教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题.

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

(1)知识结构

等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

(2)重点、难点分析

教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的`理解.

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:等比数列的概念

教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1.等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

用数学式子表示等比数列的定义.

是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.等比数列的通项公式(板书)

问题:用 和 表示第 项 .

①不完全归纳法

②叠乘法

,… , ,这 个式子相乘得 ,所以 .

(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式.

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

高一数学教案 篇5

一、学习目标:

知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题

过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理

情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法

二、学习重、难点

学习重点: 直线与平面、平面与平面平行的性质及其应用

学习难点: 将空间问题转化为平面问题的方法,

三、学法指导及要求:

1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题

四、知识链接:

1.空间直线与直线的位置关系

2.直线与平面的位置关系

3.平面与平面的位置关系

4.直线与平面平行的判定定理的符号表示

5.平面与平面平行的判定定理的符号表示

五、学习过程:

A问题1:

1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?

(观察长方体)

2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?

(可观察教室内灯管和地面)

A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?

A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?

由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线

B自主探究1:已知: ∥, ,=b。求证: ∥b。

直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行

符号语言:

线面平行性质定理作用:证明两直线平行

思想:线面平行 线线平行

例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?

例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。

问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?

自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b

平面与平面平行的`性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行

符号语言:

面面平行性质定理作用:证明两直线平行

思想:面面平行 线线平行

例3 求证:夹在两个平行平面间的平行线段相等

六、达标检测:

A1.61页练习

A2.下列判断正确的是( )

A. ∥, ,则 ∥b B. =P,b ,则 与b不平行

C. ,则a∥ D. ∥,b∥,则 ∥b

B3.直线 ∥平面,P,过点P平行于 的直线( )

A.只有一条,不在平面内 B.有无数条,不一定在内

C.只有一条,且在平面内 D.有无数条,一定在内

B4.下列命题错误的是 ( )

A. 平行于同一条直线的两个平面平行或相交

B. 平行于同一个平面的两个平面平行

C. 平行于同一条直线的两条直线平行

D. 平行于同一个平面的两条直线平行或相交

B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )

A. EH∥BD,BD不平行与FG

B. FG∥BD,EH不平行于BD

C. EH∥BD,FG∥BD

D. 以上都不对

B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是

B7一个平面上有两点到另一个平面的距离相等,则这两个平面

七、小结与反思:

高一数学教案 篇6

目标:

1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

2.让学生了解函数的零点与方程根的联系 ;

3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

4。培养学生动手操作的能力 。

二、教学重点、难点

重点:零点的概念及存在性的判定;

难点:零点的确定。

三、复习引入

例1:判断方程 x2-x-6=0 解的存在。

分析:考察函数f(x)= x2-x-6, 其

图像为抛物线容易看出,f(0)=-60,

f(4)0,f(-4)0

由于函数f(x)的图像是连续曲线,因此,

点B (0,-6)与点C(4,6)之间的那部分曲线

必然穿过x轴,即在区间(0,4)内至少有点

X1 使f(X1)=0;同样,在区间(-4,0) 内也至

少有点X2,使得f( X2)=0,而方程至多有两

个解,所以在(-4,0),(0,4)内各有一解

定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

抽象概括

y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

若y=f(x)的`图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

3、我们所研究的大部分函数,其图像都是连续的曲线;

4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

四、知识应用

例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

解:f(x)=3x-x2的图像是连续曲线, 因为

f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

练习:求函数f(x)=lnx+2x-6 有没有零点?

例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

解:考虑函数f(x)=(x-2)(x-5)-1,有

f(5)=(5-2)(5-5)-1=-1

f(2)=(2-2)(2-5)-1=-1

又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

五、课后作业

p133第2,3题