返回首页
智远网 > 短文 > 教案 > 正文

《比的基本性质》教学设计

2026/01/15教案

此篇文章《比的基本性质》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《比的基本性质》教学设计 篇1

教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

教学目标:

(一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

(二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

教学过程:

(一)复习旧知识,做好新课铺垫

1、提问:①什么叫做比?

②除法、分数、比之间有什么联系吗?

根据学生的回答板书。

被除数÷除数==前项:后项

2、观察下面的每组题目,你有什么发现吗?

第一组:12÷4=3

(12×3)÷(4×3)=3 商不变

(12÷2)÷(4÷2)=3

第二组:=3

==3 分数值不变

==3

先让学生分组讨论,再组织全班交流。

根据交流情况适时板书

被除数÷除数==前项:后项

商不变性质 分数基本性质

[评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

(二)新课,概括比的基本性质。

1、再观察一组题目

例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

填写下表,并把比值相等的比填入等式。

质量/g 体积/cm3 质量和体积的比值

第一瓶 4 5

第二瓶 16 20

第三瓶 50 50

第四瓶 40 50

( ):( )=( ):( )=( ):( ) }比值不变

1、学生独立填写后。

2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。

3、上面三个相等的比哪个更简单一些?

学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

(三)利用比的基本性质化简比

例4:把下面各比化成最简单的整数比。

(1)12:18 (2) (3)1.8:0.09

讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

根据学生的回答,整理后板书。 板书后追问:

12:18=(12÷6):(18÷6) 为什么要同时除以6?

=2:3

=(×12):(×12) 为什么要同时乘以12?

=10:9

1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

=180:9

=20:1

小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

[评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

四、沟通联系,深化认识

1、指导完成“练一练”

做第1题。学生独立填完后,要求说说是怎样想的?

做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

2、指导完成练习十三第6~9题

做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

五、课堂总结:

今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

教学评析:

1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的'基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

《比的基本性质》教学设计 篇2

《比的基本性质》教学设计

作为一名教学工作者,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的《比的基本性质》教学设计,欢迎阅读与收藏。

《比的基本性质》教学设计 篇3

第一课时比例的意义

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

本节课我们就来完成这两个目标:

三、自主探索

出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

师:你能说一说组成比例要具备哪些条件吗?

生:…

师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

生:…

【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的`有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3X3(6)3.6:6=0.6

比:()

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

《比的基本性质》教学设计 篇4

知识点:

理解比例的意义和基本性质。

能够根据比的意义或者比的基本性质来判定两个比是否能组成比例。

重点:

比例的意义和基本性质。

难点:

应用比例的意义和基本性质判断两个数能否成比例。并能正确地组成比例。

教学准备:

课件

教学过程:

一.导入

(课件中有《比的意义和基本性质》这一课题)看到这一题目时,有的同学可能会想比例是什么?比例和比有关系吗?如果有关系,会是什么关系呢?有什么区别吗?等等。这节课,我们就展开研究!

二.探究新知

1.教学比例的意义

(1)课件出示“天安门广场升旗”图,同学们请看,这是在干什么?对,这是天安门广场庄严肃穆的升旗仪式,你知道这面国旗的长和宽各是多少吗?

(2)出示数据:看到这两个数据.你能提出什么数学问题?(周长,面积,长宽的比)根据学生的回答板书:5:10/3(板书:比)

(3)你还记得哪些关于“比”的知识。(求出比值)

(4)同学请看,这是其它不同场合用到的国旗,请分别算出它们长和宽的比值。(汇报.师板书)

(5)你有什么发现吗:(比值相同)这些国旗的大小相同吗?但比值相等,两个比也就相等,我可以用等式来表示:板书:5:10/3=2.4:1.6像这样两个比相等的式子,你还能写出几个吗?(汇报:板书)

(6)像这样的式子就叫做比例:(板书:比例)哪位同学能说说什么叫做比例。(板书:表示两个比相等的式子叫做比例)这就是比例的意义,(板书:意义)

(7)说起比例,它必须是各两个条件,一个是……另一个是……

2.教学比例的判定

(1)课件出示:下面就请同学们根据比例的意义来判断一下下面这四组,哪两个比可以组成比例?把组成的比例写出来。

(2)汇报:为什么20:5和1:4不能组成比例:要判断两个比能不能组成比例,关键看什么?

(3)师小结:通过上面的学习,我们知道比例是由两个相等的比组成的……

板书:1:2=():()

师小结:像这样的比例能写完吗?只要比值是1/2就可以了。

(4)“比”和“比例”的区别

现在请同学们想一想,比例和比有什么区别。

3.教学比例的基本性质

(1)刚才,我们知道了,比例有4个项,我们把外边的两个叫做外项,把里面的'两个叫做内项。

(2)谁来说一说(1:2=6:12)这个比例的外项和内项。

(3)现在把内项和外项分别相乘,看看会有什么发现?(汇报,板书:外项的积=内项的积)

(4)检验

(5)师总结:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(板书:基本性质。

(7)根据比例的基本性质,判断是否成比例。

(8)师:判断两个比是否成比例,我们既可以用比例的意义,也可以用比例的基本性质。

(9)练习(用自己喜欢的方法来判断)

12:6和10:51/2:1/3和6:4

1.5:3和15:0.32/5和12/30

汇报:

(10)师:五分之二和三十分之十二相等吗:(板书:2/5=12/30)它是一个比例吗?说出你的理由?(指出这个比例的内项和外项)

三.巩固练习

在()里填上合适的数.(想一想,你填数的根据是什么?)

1.5:3=():4()/40=9/60

():4=9:()

四.课堂小结

《比的基本性质》教学设计 篇5

【教材分析】

在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。

【教学目标】

1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。

2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。

3.逐步养成观察与概括.比较与分析的能力。

【教学重点】

掌握等式的.基本性质。

【教学难点】

理解并掌握等式的性质,能根据具体情境列出相应的方程。

【数学思想】

转化的思想,数形结合的思想,符号化的思想

【教学过程】

一.创设情境,引出问题

教师活动

学生活动及达成目标

师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)

达成目标:由熟悉的天平引出课题激发学生的兴趣。

二.共同探索,总结方法

教师活动

学生活动及达成目标

(一)等式的基本性质一

1.出示教材第64页情境图1第一个天平图。

让学生仔细观察图,并说一说:通过图你知道了什么?

教师小结:1个茶壶的重量=2个茶杯的重量。

追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?

(师板书)

引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?

教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。

提问:如果两边各放上2个茶杯,还保持平衡吗?

两边各放同样的一把茶壶呢?

2.出示教材第64页图2的第一个天平图。

(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?

(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?

从图上你能知道什么?(出示教材第64页图2第二个天平图)

3.通过这几个实验,你发现了什么?

4.你能用一句话来表示你的发现吗?

(二)等式的基本性质二

1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?

这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?

2.出示教材第65页图1的第一个天平图,让学生观察并说明。

引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?

猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?

如果把天平的两边物品的数量分别扩大到原来的3倍.4倍呢?

3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。

质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?

教师演示。

4.通过刚才的试验,你发现了什么?

5.你能用一句话总结一下等式的这个性质吗?

6.为什么等式两边不能除以O?

1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。

尝试写出:a=2b

先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。

观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。

同时学生尝试用字母表示这个式子:a+b=2b+b

学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a

观察现在的天平是什么样的?(平衡)

生尝试写出:a+b=4b

先猜一猜,再回答,平衡:a+b-b=4b-b

得出1个花盆和3个花瓶同样重。

3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。

4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考.感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。

1.如:学生猜测天平的两边同时放2个.3个杯子;同时减去一把茶壶等。

2.学生观察并说明:

一瓶墨水的重量=一盒铅笔盒的重量

写出等式:a=b。

学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。

学生用等式表示:2a=2b。

天平仍然保持平衡

3.学生观察得出:

2个排球的质量=6个皮球的质量

有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。

学生猜测:平衡,并能用等式a=3b表示。

4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。

5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。

6.学生交流,汇报:O不能做除数。

三.运用方法,解决问题

教师活动

学生活动及达成目标

出示教材第66页练习十四第4.5题。

学生试做集体订正,注意学生列式计算时的取值是否正确。

四.反馈巩固,分层练习

教师活动

学生活动及达成目标

基础练习:利用等式的性质填空

1.如果2x-5=9,那么2x=9+()

2.如果5=10+x,那么5x-()=10

3.如果3x=7,那么6x=()

4.如果5x=15,那么x=()

拓展练习:见课件

让学生回忆等式的性质,再自主完成填空。

达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。

五.课堂总结,提升认识

教师活动

学生活动及达成目标

这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?

学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。

《比的基本性质》教学设计 篇6

教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点 :

1.理解并掌握比例的基本性质。

2.探究、发现比例的基本性质。

教学准备:多媒体课件

教学过程:

一、复习旧知

1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。 2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

3∶6 =1∶2

所以 6∶10 = 9∶15 生2: 因为 20∶5 = 4∶1

28∶7 = 4∶1

所以 20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。 2.认识比例的项

(1)观察这几组比例,它们有什么共同点?

说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。 (2)结合6:3=4:2具体说一说

在比例6:3=4:2中,组成比例的四个数“

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

3.探究比例的'基本性质

认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。 4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。 8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

(2)应用比例的基本性质判断能否组成比例

(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、巩固练习

1.完成“练一练”第1题。 (1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

2、练习七第2题

(1)下面四个数

5、

7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。 4.我是小法官,对错我来判。

(1)在比例中,两个外项的积减去两个内项的积,差是0。 ( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。 ( ) 5.完成“练一练”第2题

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。 (2)学生独立完成第2小题。

四、全课总结

今天我们学习了什么内容?你有什么收获?