返回首页
智远网 > 短文 > 教案 > 正文

《分数的基本性质》教学设计

2026/01/19教案

此篇文章《分数的基本性质》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《分数的基本性质》教学设计 篇1

【教材依据】

《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。

【设计理念】

根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

【学情与教材分析】

《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

【教学目标】

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。

【教学过程】

一、创设情境,激趣导入

师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的.少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)

生:分数的分子分母发生了变化分数的大小不变。

师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五:作业练习册2、4题

【板书设计】

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

【教学反思】

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

《分数的基本性质》教学设计 篇2

1.教材简析

《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2.教材处理

以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的.数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。

设计意图:

本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。

1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

2、从故事情境中提出问题,体现数学来源于生活。

3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、

6、在游戏活动中对数学知识进行拓展运用。

教学目标

1.知识与技能

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.过程与方法

(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

(2) 培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.情感态度与价值观

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

(2)体验数学与日常生活密切相关。

教学重点

理解分数的基本性质

教学难点

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学准备

师:电脑课件 学生:圆纸片 长方形纸

教学步骤:

一、故事引人,揭示课题。

1.教师讲故事。

话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”

唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?

[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2、组织讨论,动手操作。

(1)小组讨论,谁分的多

(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。

(3)比较涂色部分的大小,有什么发现,得出什么结论。

既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(4)教师演示

3、教学例1

(1)引导比较。

师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

你知道其中哪些分数是相等的吗?

根据学生回答板书:1/3=2/6=3/9

师追问:你是怎么知道这三个分数相等的?(图中观察出来的)

(2)师演示验证大小。

(3)完成“练一练”第1题

学生先涂色表示已知分数,再在右图中涂出相等部分。

完成填空后,说说怎么想的。

4、教学例2。

(1)组织操作。

师:取出正方形纸,先对折,用涂色部分表示它的1/2。

学生完成折纸、涂色。

师问:你能通过继续对折,找出和1/2相等的其它分数吗?

学生在小组中操作,教师巡视指导。

学生展开折法并汇报,可能出现的方法有:

连续对折两次,平均分成4份。如图:

1/2=1/4

②连续对折三次,平均分成8份。如图:

1/2=4/8

③连续对折四次,平均分成16份。

师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?

得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

板书:1/2=2/4=4/8=8/16=16/32……

(2)发现规律。

师:你有什么发现?(如学生观察有困难,可进行以下提示)

①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?

学生观察、思考,在小组中交流。

师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?

《分数的基本性质》教学设计 篇3

教学目标

1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

教学重、难点:

理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

教学过程:

一、复习旧知,了解学习起点

二、创设情境,激趣引入

课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?

三、探究新知,揭示规律

1.动手操作,形象感知。

(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。

(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。

(3)剪。把圆中的阴影部分剪下来。

(4)比。把剪下的阴影部分重叠,比一比结果怎样。

2.观察比较,探究规律。

(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的.几分之几?(板书。)

(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。

学生汇报后,教师用电脑演示。

把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”

(3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)

(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

(5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)

讨论题:

①它们之间有什么关系?它们的什么变了?什么没有变?

②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?

(6)学生汇报,师生讨论情况。

师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。

师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)

从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。

(7)抓住焦点,辨中求真。

的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。

《分数的基本性质》教学设计 篇4

一、故事引人,揭示课题。

1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2.组织讨论。

(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。

(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

分数的分子和分母变化了, 分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]

5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

二、比较归纳,揭示规律。

1.出示思考题。

2.比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的'。

2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

板书:

(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以 相同的数)

(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都除以 )

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

(板书:零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

《分数的基本性质》教学设计 篇5

教学内容:人教版五年级数学下册57页内容及58、59页练习。

教学目标:

知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。

过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。

情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

教学重点:理解和掌握分数的基本性质。

教学难点:应用分数的基本性质解决问题。

教学准备:预习生成单、作业纸、课件

教学课时:一课时

教学过程:

一、导入新课,揭示课题

1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)

2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。

3、指名学生汇报。

4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。

二、检查预习,自主探究

1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)

2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)

3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,

4.师:其他同学还有补充吗?你们得出这个结论了吗?

三、合作交流,探究新知

1.师:第一张纸涂色部分是这张纸的'(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。

2.出示合作要求(课件),指名学生读一读。

3.学生合作交流,探究学习。

4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?

5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?

6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)

8.再读一读,说说这句话中哪个词比较关键。

9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。

9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。

四、应用拓展,新知内化

1.出示例2,指名读题,理解题意。

2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)

3.学生独立在练习本上完成,指名板演,集体订正。

4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。

五、当堂检测

(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。

和()和()和()和()

(二)、填空。

======

(三)、把下列分数化成分母是10而大小不变的分数。

===

(四)、涂色表示出与给定分数相等的分数。

(五)、如果一堂课40分钟,哪个班做练习用的时间长?

六、课堂小结:通过这节课的学习,你学会了什么?

板书设计:

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。

《分数的基本性质》教学设计 篇6

《分数的基本性质》教学设计(优)

作为一名教学工作者,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么优秀的教学设计是什么样的呢?下面是小编收集整理的《分数的基本性质》教学设计,仅供参考,希望能够帮助到大家。