圆柱的体积数学教案
此篇文章圆柱的体积数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。
圆柱的体积数学教案 篇1
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式.
2.会运用公式计算圆柱的体积.
教学重点
圆柱体体积的计算.
教学难点
理解圆柱体体积公式的推导过程.
教学过程
一、复习准备
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的'高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.
2.学生利用学具操作.
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.
③近似长方体的高就是圆柱的高,没有变化.
4.学生根据圆的面积公式推导过程,进行猜想.
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体.
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2。1米,它的体积是多少?
2。1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3。14×
=3。14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7。8(立方分米)
答:这个水桶的容积大约是7。8立方分米.
三、课堂小结
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
四、课堂练习
(一)填表
底面积S(平方米)15
高h(米)3
圆柱的体积V(立方米)6.4
(二)求下面各圆柱的体积.
(三)一个圆柱形水池,半径是10米,深1。5米.这个水池占地面积是多少?水池的容积是多少立方米?
五、课后作业
(一)求下列图形的表面积和体积.(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4。5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
六、板书设计
圆柱的体积数学教案 篇2
教学内容:
教材第8-9页圆柱的体积公式,例4和“试一试”及“练一练”,练习二第1-4题。
教学要求:
1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件,正确地求出圆柱的体积。
2、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教具准备:
圆柱体积演示教具。
教学过程:
一、复习引新
1、求下面各圆的面积(口答)
(1)r=1厘米粉
(2)d=4厘米
(3)c=6.28米
2、想一想,学习计算圆的面积时,是怎样得出圆的面积计算公式的?
3、提问:什么叫体积?常用的体积单位有哪些?
4、已知长方体的底面积S和高h,怎样计算长方体的'体积?
二、教学新课
1、根据学过的体积概念,说说什么是圆柱的体积。
2、怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢?现在我们大家一起来讨论。
3、公式推导。
(1)请同学们指出圆住体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
(4)讨论并得出结果。
圆柱体通过切拼,圆柱体转化成近似的()体。
这个长方体的底面积与圆柱体的底面积(),这个长方体的高与圆柱体的高(),这个长方体高与圆柱体的高()。
因为长方体的体积等于底面积乘以高,所以,圆柱体的体积,计算公式是:()。
用字母表示:()。
(5)小结
4、教学例4
出示例4,审题。
提问:你能独立完成这题吗?
指名一人板演,其余学生做在练习本上。
5、做练习二第1题。
让学生做在课本上。
6、教学“试一试”一个圆柱的底面半径是2分米,高是8米,求它的体积。
指名一人板演,其余学生做在练习本上。
三、巩固练习
做“练一练”第1、2题。
让学生做在练习本上。
让学生说一说这两题列式有什么不同,为什么不一样。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?
五、布置作业
课堂作业:练习二第2、3题。
家庭作业:练习二第4题
圆柱的体积数学教案 篇3
教学目标
圆柱的体积(1)
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
复习导入
1、口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2、引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
新课讲授
1、教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的'形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2、教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的体积是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
课堂作业
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
课堂小结
通过这节课的学习,你有什么收获?你有什么感受?
课后作业
完成练习册中本课时的练习。
第4课时圆柱的体积(1)
课后小结
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
课后习题
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
圆柱的体积数学教案 篇4
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的'底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题
(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
三、布置作业
完成一课三练的相关练习。
圆柱的体积数学教案 篇5
学内容:教科书第46—47页练习十一的第8—13题。
教学目的:通过综合练习,使学生进一步掌握有关圆柱的表面积和体积的计算。
教具准备:长方体、正方体和圆拄模型各一个。
教学过程:
一、复习
1.复习平面图形。
教师:我们已经学过的平面图形有哪些?
引导学生总结出已学过的平面图形有:长方形、正方形、平行四边形、三角形、梯形和圆。
教师:它们各自的面积公式是什么?
指名学生分别回答,教师板书在黑板上:
长方形的面积=长×宽
正方形的面积=边长×边长
平行四边形的面积=底×高
三角形的面积= ×底×高
梯形的面积:= ×(上底+下底)×高
圆的面积=∏×R×R
2.复习立体图形。
教师:我们已经学过的立体图形有哪些?
引导学生总结出已经学过的立体图形有:长方体、正方体和圆柱。
教师:它们的表面积和体积怎样求?
出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们表面积和体积的.
计算公式·,教师列成表格板书在黑板上:
教师:这三个立体图形的体积公式能否统一成一个呢?
使学生明确长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”。
教师:—如果长方体与圆柱的底面积和高分别相等,那么它们的体积相等吗?为什么?
二、课堂练习
l。做练习十一的第8、9题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
2。做练习十一的第10题。
这是一道联系实际的题目。读题后,教师提问:
“这道题要求前轮转动一周压路的面积。实际上是求什么?”
“那么这个圆柱的底面直径和高分别是多少呢?”
使学生弄清求前轮转动一周压路的面积,就是求前轮这个圆柱的侧面积。而这个圆柱的底面直径就是前轮的直径,这个圆柱的高就是前轮的轮宽。
分析后。让学生做在练习本上。做完后集体订正。
3.做练习十一的第11题。
指名一学生读题后.教师提问:
“这道题已知什么?求什么?”
“装了 桶水是什么意思?”
要使学生明白:装了 桶水就是说水的体积是水桶体积的 即水的体积是24× 立方分米。根据圆柱体积的计算公式,可以直接计算,也可以用列方程来解。
设水面高为X分米。
24× =7.5×X
X=18十7.5
X=2.4
4.做练习十一的第12题。
第(1)题,引导学生从圆柱的体积计算公式人手,由于“圆柱的体积=底面积×高”,所以当底面积相等财,高和体积成正比例。
第(2)题,启发学生根据第(1)题的结论列出比例式进行解答:即:
设另一个圆柱的体积为x立方分米:
=
x=
X=40
5.做练习十一的第13题。
读题后,教师提问:
“两个圆柱的底面半径相等说明了什么?”
“要求第二个圆柱的体积比第一个多多少,应该先求什么?怎样求?”
启发学生仿照第12题,利用比例的知识先求出第二个圆柱的体积.再求出第二个圆柱的体积比第一个多多少立方厘米。
三、选做题
让学有余力的学生做练习十一的第14、15题和思考题。
1,练习十一的第14题。
教学前教师要准备一个实物,或者制作一个教具。通过对教具的观察,使学生明确钢管的体积就是大圆柱的体积减去中间一个小圆柱的体积后剩下的体积,即钢管体积=大圆柱的体积一小圆柱的体积。
2.练习十一的第15题。
这道题是有关体积计算的应用题。要先求出圆柱形粮囤的容积后,再计算其他问题就比较简便。
3.思考题。
这道题需要知道铁块的体积等于它完全浸入水里后所排开水的体积。那么,只要求出铁块从圆柱形容器中的水里取出后,水面下降后所减少的这部分圆柱形水柱的体积,就是铁块的体积。
具体解法: 3.14×( )’×2
=3.14×25×2
=157(立方米)
圆柱的体积数学教案 篇6
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1、板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的'实际问题。(完整板书:用圆柱的体积解决问题)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1、创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2、你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
返回首页