返回首页
智远网 > 短文 > 教案 > 正文

交换律教学设计

2026/01/20教案

此篇文章交换律教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

交换律教学设计 篇1

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4.初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,学生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的.学习目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1.问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2.问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3.观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

学生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4.学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

交换律教学设计 篇2

教学目标

1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点

理解加法的运算律。

教学难点

概括加法的运算律,尝试用字母表示。

教学过程

一、教师适当引导,进入新知。

二、教学加法交律。

1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

板书算式。

2、比较这两道算式有什么不同?

3、得数相同的算式我们可以用等号把它们连成等式。

4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的`?核实是否相等。

5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

学生思考,充分发表自己意见,教师给予肯定。

7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:

引出:加法交换律(板书)

8、小练习:填数

三、教学加法结合律。

1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

4、出示书上题目,说一说,算一算。

5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

6、你能不能再举几个例子?学生举例。

7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

8、小练习:填数。

四、总结新知,组织练习。

1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

2、课后练习:

(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

(2)比较体会运算律的作用,知道凑整百。

(3)凑整百小练习。

交换律教学设计 篇3

教学内容:

人教版小学数学四年级下册第24---25页例题,及做一做。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。

教学重点:

探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

教学难点:

乘法结合律的推导过程。

教学用具:

课件

教学过程:

一、创设情境,生成问题

1、猜谜引入

猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

生:(积极举手)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。

出示:(1)根据运算定律在下面的()里填上适当的数。

48+___=a+___

61+28+72=61+(___+72)

718+(282+6)=(718+___)+___

(b+132)+768=___+(_____+768)

(2)下面各题怎样计算简便就怎样计算。

78+29+22。”79+145+21

师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)

师:怎么用字母如何表示加法交换律、结合律呢?

板书:a+b=b+aa+b+c=a+(b+c)

3、设置疑问,引入新课。

加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?

二、探索交流,解决问题。

活动一:探索乘法交换律

1、猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:……

2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

4、交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:2×3=3×2,0×8=8×0等等。两个因数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个因数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5×8=32,也可以用8×5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。

师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300×

师:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换因数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:会用字母表示吗?板书:a×b=b×a。

5、师:学习乘法交换律有什么作用?

生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。

活动二:探索乘法结合律。

师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的号召。

1、出示例题2:

同桌讨论,你们是怎样计算的?

生1:先算出一共种了多少棵。

(25×5)×2=125×2=250(人)

生2:先算每组要浇多少桶水。

25×(5×2)=25×10=250(人)

2、全班交流

(1)师:我们来观察两位同学的做法,你有什么发现?

比较等号两边的算式,有什么相同点和不同点?

生1:结果相等。

生2:第二个算式中有括号,第一个算式中没有。

(2)猜想:是不是具备这种形式的'两个算式结果都相等?这会不会是乘法中的一个规律?

生1:是。

生2:可能是。

……

师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)

生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。

师:同学们觉得呢?---可以。

师:通过一组算式就能验证吗?

生:不能,要多举几个例子。

师:说得真好。下面就来验证一下。

(3)学生举

比较这几组等式,你发现了什么规律,把你的发现与同桌交流。

师:能用自己的语言描述一下你发现的规律吗?

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)

师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?

(4)师:怎样用字母表示乘法结合律?

板书:(a×b)×c=a×(b×c)

(5)师:有什么好方法帮助记忆?

生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。

师:这个记忆方法确实很好,我们大家一起来试一试。三、巩固应用,内化提高。

师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。

1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。

15×16=16×()

(60×25)×=60×(×8)

125×(8×)=(125×)×14

3×4×8×5=(3×4)×(×)

25×7×4=×(×4)

同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。

2、计算23×15×25×37×2

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。

师:运用了乘法的运算律,计算时你有什么体会?

3、思考题:用简便方法计算。

36×25125×32

例。6=6×300

学生的方法很多:36×25=25×4×9=5×6×5×6=、、、、、、

四、回顾整理,反思提升

通过这节课的学习,你有什么收获想和大家分享一下呢?

板书设计:

乘法运算律

乘法交换律乘法结合律

3×5=5×3(25×5)×2=25×(5×2)

7×8=8×7(12×5)×4=12×(5×4)

9×8=8×9(35×8)×7=35×(8×7)

a×b=a×b(a×b)×c=a×(b×c)

交换律教学设计 篇4

教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的.联系,能用所学知识解决简单的实际问题。

教学过程:

一、基本练习

(1)口算:

50×2=10050×20=1000

25×4=10025×8=20025×12=30025×40=1000

125×8=1000125×16=200

125×24=3000125×80=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

板书:5×225×4125×8

(2)在□里填上合适的数。

30×6×7=30×(□×□)

125×8×40=(□×□)×□

(3)计算:

43×25×425×43×4

比较两道题,在运用乘法运算定律时有什么不同?

在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:

用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。

25×42×468×125×8

4×39×25

(5)对比练习:

4×25+16×25

4×25×16×25

(25+15)×4

(25×15)×4

46×25

(40+6)×25

49×49+49×51

49×99+49

(68+32)×5

68+32×5

学生小组分工后独立完成,再进行小组内交流。

汇报。

二、小结

学生谈收获。

交换律教学设计 篇5

设计理念:生活经验是小学生学习数学的宝贵财富,也是他们进行数学探索的基础。教师应充分利用学生已有的生活经验,让他们在此基础上实现对数学的再创造,切实体验数学与生活的联系,经历数学知识发生、发展和形成的过程,提高学生应用数学解决实际问题的'能力。

教材分析:教材从情境引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律,使学生经历由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。

教学目标:探索和理解加法交换律,并能够用字母来表示加法交换律;经历探索运算定律过程,通过对实际问题的解决,进行比较和分析,发现并概括出加法交换律;在数学活动中获得成功的体验,培养学生独立思考和探究问题的意识和能力。

教学准备:多媒体课件。

教学过程:

一、在情境中初步感知规律

1.导入故事《朝三暮四》,引发学生思考。根据学生回答板书:

3+4=7(个)4+3=7(个)3+4=4+3

2.创设问题情景。出示主题图,引导学生观察,图中告诉了我们哪些信息?我们要解决的问题是什么?

3.尝试解决问题。学生独立解决问题,根据学生解答板书:

40+56=96(千米)56+40=96(千米)40+56=56+40

引发猜想:是否任意两数相加,交换位置,和都不变?

二、在举例中验证规律

1.交流:有了猜想,我们还得验证。你打算怎么验证?

2.学生举例验证,教师巡视指导。

三、在比较中概括规律

1.同学们仔细观察列举出的等式,说一说你发现了什么?你能用自己的话说出你发现的规律,并给它命名吗?(两个加数交换位置,和不变。这叫加法交换律。)

2.让学生用自己喜欢的方式表示加法交换律。用语言表达加法交换律比较麻烦,怎样表示既简单又清楚呢?试一试,用你喜欢的符号、字母或图形表示两个加数。

四、在类比中拓展规律

1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。

2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。

3.交流:哪一种猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。

4.探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能推翻猜想?

五、在应用中深化规律

1.请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

2.下面我们就来比一比,看谁学得最好。

(1)你能在括号里填上合适的数吗?

300+600=()+()()+55=55+420 ()+65=()+35

(2)仔细看一看,下面的算式符合加法交换律吗?

270+380=380+270 b+800=800+b

(3)运用加法交换律,你能写出几个算式?写写试试吧。

25+49+75=()+()+()

学生写出算式以后,让学生观察这些算式,哪两个数交换了位置?在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

六、在反思中深化理解

通过这节课的学习,你有哪些收获?说一说自己表现最好的方面。

交换律教学设计 篇6

教学目标

1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程

一、复习旧知、导入新课

1.出示:

你能在下列的 内填上合适的数吗?

28+320=320+ ;

(27+138)+62=27+( + );

35+ = +35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2.出示:

在下列○内填上合适的运算符号。

4○10=10○4 (2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3.导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

二、举例验证探索规律

(一)探索乘法交换律。

1.情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

板书:3×5=5×3。

【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

2.举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3.总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

4.回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

(二)探索乘法结合律。

1.初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

2.引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5×3)×4=5×(3×4)。

3.举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4.总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(a×b)×c=a×(b×c)。

【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的'积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

三、尝试运用理解规律

1.做“想想做做”第1题。(略)

2.尝试简便运算。

谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

出示第62页的“试一试”,学生尝试简便运算。

指名学生板演。

评讲:你能说出计算时运用了乘法的什么运算律吗。

小结。(略)

【说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。】

四、巩固练习拓展提高

1.做“想做做做”第2题。

观察:你发现每一组题的上、下两道算式有什么联系?

谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

提问:你能说出算得又对又快的理由吗?

【说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。】

2.做“想想做做”第3题。

谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

组织交流。

3.用简便方法计算。

25×6×4×15 25×125×32

学生练习后,组织交流。

五、引发联想,鼓励探究

谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

127-53-27 218-69-31

127-27-53 218-(69+31)

72÷3÷8 54÷3÷2

72÷8÷3 54÷(3×2)

【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】