返回首页
智远网 > 短文 > 教案 > 正文

可能性教学设计

2026/01/22教案

此篇文章可能性教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

可能性教学设计 篇1

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师则是组织者、引导者与合作者。

动手实践、自主探索、合作交流是学生学习数学的重要方式。本节课根据学生的心理特点和教材实际,让学生在猜一猜、摸一摸、想一想、说一说等充满童趣的情景中玩数学、学数学,亲身体验知识的形成过程。

1.重视创设情境,让学生从现实生活中学习数学。

标准中指出,要充分利用学生的生活经验,设计生动有趣、直观形象的教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学。

教学反思。

当学习的内容和学生的生活实际越接近,学生自觉接纳知识的程度就越高。通过情境的.创设,不仅使学生对“一定”、“可能”和“不可能”有了初步感受,而且能领悟数学与现实生活的联系。

2.重视操作实践,让学生在数学活动中学习数学。

数学教学是数学活动的教学,因此在教学过程中应十分重视学生的实践活动和直接经验,充分让学生动手、动口、动脑,在活动中自己去探索数学知识与数学思想方法,在活动中体会成功的喜悦。

课堂上,先让学生预测摸出的球的颜色,并用“一定”、“不可能”“可能”来描述摸出的结果,然后让学生亲自摸一摸,体验事件发生的确定性和不确定性,并注重对不确定性和可能性的直观感受。给学生提供了比较充足的活动的空间、探索的空间和创造的空间,使每一个学生都动起来,去感悟、去体验、去认知。

3.关注学生情感与态度,帮助学生获得成功体验,树立学好数学的信心。

标准把情感与态度作为四大总体目标之一,是因为把数学课堂看成是素质教育的课堂,数学教学不仅仅是传授知识,培养能力,更重要的是使学生能积极参与数学学习活动,对数学充满好奇心和求知欲,要获得成功的体验,有克服困难的信心。

4.需加强:合作交流,引导学生自主探索学习。

标准中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”好多教师在课堂上都比较注重学生的合作学习,但合作学习并不是简单地把学生分成几个小组,让学生围在一起坐就行。低年级学生自我管理能力差,还没有形成合作的意识和能力,往往出现分组学习时,学生的参与程度不均衡,学生合作的主动性还不够。

在安排学生进行合作学习时,要重视教给学生合作的策略,及时对合作的好的学生作出公正合理的评价。例如让学生找同伴说说事件发生的可能性,这是两个学生之间的交流;小组讨论可能摸出的是什么颜色的球,这是小组内学生间的交流。通过合作与交流,让学生加深了对所学知识的认知。

5.紧密联系生活。在课的最后,我让学生把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的,并且举出一些例子,用“一定”“可能”、“不可能”说一说。

可能性教学设计 篇2

教学内容:

北师大版小学数学教材四年级上册第95页、96页内容。

教学目标:

知识与技能

通过具体的操作活动,让学生直观感受到有些事件的发生是确定的,有些事件的发生是不确定的。

结合具体的问题情景,能用“一定”“不可能”“可能”简单描述事件发生结果。

过程与方法

创设抛硬币、摸白球及机智问答的情况,让学生亲历事件发生的可能性大不之分。充分关注学生的`学习过程,对积极参与、勇于交流的行为给予充分的肯定和表扬。体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力和合作学习能力。

情感、态度和价值观

让学生在同伴的合作和交流中获得良好的情感体验,感受到数学与生活的密切联系。让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验,激发学生学习数学的兴趣。

教学重点:

在具体的活动情景中体验生活中的确定现象和不确定现象。

教学难点:

能用比较规范的数学语言对确定现象和不确定现象进行分析描述。

教具准备:

硬币、若干个红白颜色的乒乓球、两个黑色袋子

教学过程:

一、回顾铺垫,游戏引入

1、师与生玩“剪刀石头布”的游戏

2、导出课题:今天我们一起在游戏中来研究事情发生可能性的情况。(板书:可能性———不确定性)

二、学标展示

通过这节课的学习我要学会用“一定”“不可能”“可能”简单描述事件发生结果。

三、活动体验,探究新知

1、抛硬币活动(研究不确定现象)

a、猜测:硬币落地后是正面还是反面向上?

b、学生分组进行抛硬币活动,观察并记录。

c、小组汇报抛硬币的结果。

d、引导学生用规范的语言描述并小结:我们把像这样的,可能出现的结果不止一种,而使用人们事先不能确定的现象叫做“不确定现象”。

e、在生活中,还有哪些游戏活动具有不确定性的结果,并描述一下。

2、摸球比赛(研究确定现象)

a、指名两位同学上台摸白球比赛,共进行6局,比赛3局后交换再摸。

b、引导学生用“一定”“不可能”来描述从两个袋子摸出白球的情况。

c、教师小结:像这样结果只有一种的情况,我们就用“一定”、“不可能”来描述这种确定现象。

四、达标检测

1、完成练一练第一题,指导学生用规范的语言描述。

2、联系生活,巩固认识完成练一练第二题

五、拓展延伸,迁移应用

用“可能”“一定”“不可能”这些词语说一说生活中的事。

六、收获回顾

指名谈谈本堂课收获

板书设计:

不确定,可能

不确定性,一定,确定,不可能

可能性教学设计 篇3

教学内容:义务教育课程标准实验教科书数学六年级上册94-96页例1、例2

教学目标:

1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。

2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。

3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学重点:

理解并掌握用分数表示可能性的大小。

教学难点:

在认识事件发生的不确定现象中感受统计概率的数学思想。

教学准备:演示课件、乒乓球、布袋、棋子、纸盒等。

教学过程:

一、情境与问题

1、课前谈话,狄青百钱定军心

2、问题引入

师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)

师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)

师:可能性有大有小。(板书:可能性的'大小)

二、探究与交流

1、教学例1

出示例1场景图

问:裁判在做什么?(猜球。场景再现)

问:用猜左右的方法决定由谁先发球公平吗?为什么?

学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。

指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。

师:你是怎样理解这里的1/2?

2、同步体验

教师拿出一个口袋,向里面放入一个黄球,问:从中任意摸出一个球,摸到黄球的可能性是几分之几?

学生提问:其中有几个球?其中几个黄球?

动手摸一摸,边摸边问:这时可以得出结论了吗?

(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)

试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?

学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,

摸到黄球的可能性又是几分之几?

问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。

问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?

小结:放5个球,其中黄球1个。

三、迁移与提升

1、教学例2

出示例2中的实物图(逐一出示,学生说出各是什么牌)

问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?

讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1/6。

一共有6张牌,摸到每张牌的可能性都是1/6。

问:你还想到什么问题?

小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)

汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?

(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。

汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?

(对比练习:红桃A红桃2红桃3黑桃A黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)

2、同步练习

看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?

(自由说一说)

3、阅读拓展

阅读教材94、95页,还有什么问题吗?

出示“你知道吗?”

四、实践和应用

1、成语里的数学(用分数表示成语里某个事件的可能性的大小)

十拿九稳百发百中智者千虑必有一失

2、操作和推测

口袋里装着白色和黑色的棋子共4个。如果不打开袋子看,你们有办法知道哪种颜色的棋子有几个吗?

根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?

组织操作,搜集摸球结果,汇总发现。

指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。

可能性的大小离不开统计。

练习:如果指针转动80次,可能有多少次停在红色区域,可能有多少次停在黄色或蓝色区域?

3、活动里的数学

现场设奖现场抽奖

学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。

4、故事释疑

可能性教学设计 篇4

可能性教学设计通用(15篇)

作为一名专为他人授业解惑的人民教师,可能需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。我们该怎么去写教学设计呢?以下是小编精心整理的可能性教学设计,仅供参考,希望能够帮助到大家。

可能性教学设计 篇5

教学内容:

人教版义务教育课程标准实验教材五(上)第99-100页。

教材分析:

“可能性”的教学,学生在三年级时已经初步体验有些事件的发生是确定的,有些则是不确定的。本节课的内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

教学目标:

1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。

2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。

3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。

4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。

教学重点:

体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。

教学难点:

游戏公平性的判断,设计公平的游戏方案,能对简单事件的可能性做出预测。

教学方法:

引导探究法、实验法、小组合作交流法

教学准备:

CAI课件、长方体和正方体盒子各一个、每小组准备一枚硬币和活动记录表一张、全班学生名单(课前把每个学生的名字写在小纸片上折好)

教学过程:

一、创设情境,导入新课:

我校一年一度的秋度趣味运动会就要在11月下旬召开了,在这次趣味运动会上,我校设计了这些活动项目,请看大屏幕——足球赛、跳棋比赛、老鹰捉小鸡、摸球。为了这次运动的成功举办,老师们正在设计各项活动的规则,同学们也积极地进行训练,让我们一起去看看那热闹的场面吧——(课件显示:足球赛场面)

二、自主探究,深入体验:

1、你认为抛硬币决定谁开球公平吗?为什么?说说你的想法。

过渡并揭题:我们在抛硬币的时候可能会出现正面,也可能会出现反面,所以这是一件不确定的事,今天我们一起来研究不确定事件发生的可能性。(板书课题:可能性)

2、既然大家都认为是公平的,请你想一想,正面朝上的可能性用一个什么样的数表示合适呢?

如果用一个简单的分数表示就是……(1/2)

那反面朝上的可能性是多少?

3、如果抛10次,你认为正面朝上的次数可能是多少?还可能是多少?如果抛40次呢?

过渡:刚才我们通过研究,认为抛硬币的方法来决定谁先开球是公平的,下面我们来玩一玩。

4、小组合作:

课件出示温馨提示:

①6人一小组分工合作。其中:

1人抛硬币;1人报抛的结果;1人监督报的是否正确;

1人用“正”字法填写记录表;1人监督填写的记录表是否真实;1人向全班汇报小组实验情况。

②每组抛40次,抛硬币时高度适中,不要用力过猛。

③思考:正面朝上的次数与总次数之间的关系。

5、汇报交流:

学生汇报抛的结果,教师填写表格。

组别抛硬币总次数正面朝上的次数反面朝上的次数

通过观察这个表格,你有什么发现?

正面朝上的次数与反面朝上的次数相等吗?为什么会出现这个结果?

6、我们继续抛下去,会是怎样的一个结果呢?历史上很多科学家也做过这样的实验。(课件出示)

随着抛掷次数的不断增加,正面朝上的次数有什么特点?

三、联系实际,理解应用:

1、三人跳棋赛

这样设计转盘公平吗?怎样设计这个转盘才公平?

是这样吗?为什么这样是公平的.?

如果,转动转盘90次,估计大约会有多少次指针是停在红色区域?说说你这样估计的理由。

2、老鹰捉小鸡

你们玩儿过吗?怎么玩儿的?

我们学校是这样设计游戏方案的(课件出示):

6名同学玩老鹰捉小鸡的游戏,老师分别在长方体和正方体的盒子各面分别写上1,2,3,4,5,6。每人选一个数,然后任意掷出盒子,朝上的数是几,选这个数的人就当“老鹰”。

你认为选哪个盒子做游戏公平?

我们也选6名同学下课了做这个游戏吧!选谁呢?这样吧,我们抓阄来决定吧。你认为抓到你的可能性是多少?(指名回答)

四、拓展延伸,加深理解:

摸球:

课件呈现画面:个黑球,个蓝球。

(1)你认为摸到黑球的可能性是多少?

(2)摸到黑球的可能性是1/10,桌子上该怎么放球?

(3)摸到黑球的可能性是蓝球的1/2,桌子上该怎么放球?

五、回味新知,反思小结:

通过今天的学习,你学会了什么?生活中也有一些可能性事件,有些是公平的,有些是不公平的,希望同学们都做一位有心人,认真观察,到生活中发现更多的数学知识。

板书设计:

可能性

1/2黑:

1/3蓝:

可能性:黑球是蓝球的1/2

可能性教学设计 篇6

教学目标:

1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

3、进一步体会有关“平均数、众数、中位数”在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。

教学过程

一、复习有关统计的知识和方法。

1、引导学生回忆收集和整理数据的方法。

①广泛地有针对性地收集各种原始数据。

②对数据进行加工,去粗取精,去伪存真。

③数据处理、分类和计算。

④ 按一定的顺序或方式表示出来。

提问:收集数据有哪些方法?(小组讨论,集体交流)

小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。

2、提问:记录数据有哪些方法?举例说明。

(如选举中队长统计选票时可以用画正字的方法,作图形符号的方法…)

3、出示填空题。

( )统计图能清楚地表示出数量的增减变化情况

( )统计图可以清楚地表示出各部分同总数的关系。

( )统计图能清楚地直接比较出数量的多少。

小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的特点,我们要根据数据特点进行选择。

4、指导学生完成第1题

⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)

⑵思考:这两组数据分别制成什么统计图比较合适?为什么?

⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。

⑷提出一些问题让学生看图回答。

二、回忆不同统计图的特点。

(一)出示教材113页的统计图指导观察统计图

1、指名回答,这是什么统计图?

2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?

(①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)

3、独立完成统计表

根据图中的信息将统计表填写完整。

4、小组交流讨论教材中提出的4个问题

引导学生可以根据统计图或统计表进行回答出示条形统计图

(二)指导完成第3题

1、出示第3题统计表,说说从表中可以了解哪些信息?

2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)

3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)

4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。

5、在讨论中完成对两个问题的解答。

(三)指导完成第4题

1、讨论扇形统计图的有关特征?

2、独立完成书上3个问题的解答,然后集体校对

三、复习“中位数、众数与平均数”

(一)集体讨论复习:

1.什么是“中位数、众数与平均数”?并说说它们有什么不同?

2.举例说说怎样求平均数、众数和中位数?

(二)出示生物小组的同学每次用10粒绿豆做发芽试验,下面是他们经过整理的10次发芽情况。

发芽粒数

0、5、7、8、9、10

次数

1、2、4、1、1、1

(1)这10次试验中,发芽的绿豆一共有多少粒?总的发芽率是多少?

(2)这10次试验中,发芽粒数的众数是多少粒?

(三)出示教材中115页第5题

1、先让学生把图中每个直条所表示的人数标出来。

2、依次比较每组两个直条,说说没有龋齿的`人数哪个年级多,哪个年级少?有1颗龋齿的人数哪个年级多?哪个年级少?

3、从整体上比较两个年级学生牙齿健康情况。

4、指导一年级学生龋齿颗数的众数。

一年级共有50个学生,那么就有50个反映每个人龋齿颗灵敏的数据,而这50个数据中,龋齿是1颗的共有19个,所以一年级龋齿颗数的众数是“1颗”

5、引导回答,六年级龋齿颗数的众数。

6、学生独立计算第(3)个问题。

(四)出示第6题,引导观察表格。

1、指导学生用计算器计算平均数。

2、指导学生计算每组数据的中位数,组织学生讨论计算中位数要注意什么?

(先把数据按从大到小或从小到大的顺序进行排列)

3、 表示这组男生体重的一般情况,平均数和众数哪个更合适?

(用中位数代表男生体重的一般情况比较合适,因为男生体重的数据中,有8个低于平均数,只有两个高于平均数,平均数的位置明显偏离这组数据的中心。)