返回首页
智远网 > 短文 > 教案 > 正文

3的倍数的特征教学设计

2026/01/26教案

此篇文章3的倍数的特征教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

3的倍数的特征教学设计 篇1

教学内容:

北师大版数学实验教材五年级上册第一单元“倍数和因数”第三课时。

教学目标:

1、经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的倍数。

2、培养学生分析、比较、猜想、验证的能力,提高学生的合情推理能力。

教材分析:

1、单元内容简介:

本单元是在学生学过整数的认识,整数的四则计算,小数、分数、负数的认识等知识的基础上展开学习的。本单元的学习内容主要包括认识自然数和整数,倍数与因数,找倍数;2、5、3倍数的特征;找因数;质数与合数,奇数与偶数等知识,使知识进一步系统化。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。

本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时会有一定的困难。教材明确规定在研究倍数与因数时,限制在不是零的自然数范围内研究,避免由此而带来的一些小学生尚不必研究的问题。

2、本节课内容简介:

教材把课题确定为“探索活动(二)”,主要目的是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么3的倍数有什么特征呢?”的问题,目的是引导学生思考和探索3的倍数的特征。教学时,可以借助这个问题引导学生提出猜想。在探索3的倍数特征时,教材利用100以内的数表来研究,先让学生找出3的倍数,再观察特征,说说有什么发现,学生可能受知识迁移的影响去研究个位上的数与十位上的数,但都无法发现规律。适当的时候,教师可以作一定的提示:“将3的倍数每个数的各个数字加起来观察呢?”以帮助学生逐步发现规律。在初步得出结论的基础上,教师应进一步提出:“这个规律对三位数是否成立?”的问题,促使学生能自己找几个三位数来验证规律。需要注意的是在日常的练习与学习评价时,一般只要求学生判断100以内的3的倍数。

学情分析:

学生经历了课程改革四年的时间,已经养成了动脑思考的习惯,能根据材料选择相关的信息进行讨论、交流与研究,积极进行小组合作,更为重要的是能把信息进行重新组合,从而选择有用的信息进行问题的研究。当一个挑战性的问题来临时,学生的表现一般是群情激昂,对数学问题有着浓厚的研究兴趣,可以说,学生有了一定的自学与研究能力。

备课思路:

1、借助学生的学习经验与基础,提出数学问题,引导学生猜测。

2、利用100以内的数表,在猜测的基础上,研究并观察3的倍数的特征。

3、通过直观学具的操作,进一步认识3的倍数的特征。

4、引导学生验证发现的规律。

5、在练习的基础上,运用3的倍数的特征去研究9的倍数的特征。

活动过程:

活动一:提出数学问题。

(一)按要求组数。

1、用3,4,5三个数字按要求组成三位数。

(1)组成2的倍数。

(2)组成5的倍数。

2、学生用语言描述2,5的倍数的特征。

一点想法:

这个过程,比教材的.要求要稍微高一点,教材上的要求一般是在100以内的数种研究2,5,3的倍数,这里面有一个考虑,拓展到三位数中来复习旧的知识,使复习起到桥梁的作用,进一步理解2,5的倍数的特征。

(二)提出问题。

1、能不能组成是3的倍数的三位数。

2、3的倍数有什么特征?

活动二:探索数学问题。

(一)对学生猜想问题的处理。

1、进行猜想。

(1)学生面对问题进行猜想。

(2)教师根据学生的猜想进行适当的引导。

学生可能出现的情况:

(1)猜测个位上是3,6,9的数是3的倍数。

(2)个位上能被3整除的数能被3整除。

2、探索猜想。

(1)学生用3,4,5三个数字组成是3的倍数的三位数。

(2)学生举例子:比如453,543。

(3)学生如果出现345或354等例子,教师可以写在黑板上,不用多加评论,作为后续的学习内容。

(4)在这个过程中,学生可能会得出猜想结论的成立,即:个位上是3,6,9的数是3的倍数。

3、验证猜想。

(1)让学生举例子对猜想的结论进行验证。

(2)在这个过程中,学生可能会发现下面两种情况。

①15是3的倍数,但是个位上的数字是5,不是3,6,9。

②16个位上的数字是6,但是不是3的倍数。

(3)猜想的结论不成立。

(4)让学生对猜想的结论不成立这个问题,提出自己的想法。

在讨论和交流中明白对于一个结论是否成立,只举一个正例是不够的,但是只要举出一个反例就可以推翻一个结论。

(二)在质疑中引导学生探究3的倍数的特征。

1、问题冲突:那么多的数,我们怎么找呢?我们要聪明的找,从比较小的数开始找。

2、请在下表中找出3的倍数,并做上记号。

(教师出示100以内数表,学生人手一张,在学生活动后,组织学生进行交流,并呈现学生已圈出3的倍数的100以内数表,如下图)

3、观察3的倍数,你发现了什么?与同桌交流一下。

(1)在这个过程中,教师要作为一个倾听着,听学生有什么发现,有什么困惑。

(2)学生发现个位上的数字没有什么规律,十位上的数字也没有什么规律。

4、教师引领。

(1)斜着观察,你发现了什么?

(2)在学生观察思考的基础上,根据学生的实际情况提供新的思考点:将每个数的各个数字加起来试试看。

5、得出结论。

一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

6、验证结论。

(1)利用100以内数表来验证。

(2)延伸到三位数或更大的数。

①回到我们课始的问题,用学生写出的345或354等例子进行验证,

②写一个更大的数试试看。

(3)完成课本第7页的试一试和练一练第1题和第2题。在学生独立完成的基础上,进行讨论和交流。注意对学习困难学生的指导和帮助。

活动三:拓展与延伸

(一)回顾与反思

(1)教师和学生一起回顾整节课的思考过程,一种学习方法的指导。

(2)回顾学习的知识有哪些,再次进行整理与归纳。

(二)完成实践活动

1、猜想并验证9的倍数的特征。

(1)学生阅读教材,按照教材上几个问题分层次展开研究。

(2)个人独立思考,小组研究的基础上进行全班的交流。

特别说明:这个学习过程可能在课内完成不了,可以延伸到课外,让学生积极主动地进行探索与研究,一定让学生经历涂、画等过程,使学生获得真实的体验。

3的倍数的特征教学设计 篇2

教学目标:

1.使学生通过“观察、猜想、验证”,理解并掌握3的倍数的特征。

2.能熟练地判断一个数是否为3的倍数。

3.培养从不同角度去研究问题,用不同方法解决问题的能力。

教学重难点:

1.掌握3的倍数的特征,能根据特征准确判断一个数是不是3的倍数。

2.理解2、5的倍数特征为什么只看个位数字,而3的倍数特征要看各个数位上的数字和。

教学过程:

一、复习导入:

1.回顾2和5的倍数的特征,给下列数分类:

8 15 20 36 30 47 65 96

2.个位上是0、2、4、6、8的数是2的倍数,请你猜一猜3的倍数个位上有什么特征吗?

3.学生自由发言。

4.今天这节课我们一起学习3的倍数的特征。(板书课题)

【设计意图】:

让学生复习2和5的特征从而迁移到猜想3的倍数有什么特征,激发学生的求知欲望和兴趣。

二、探究新知

1.从个位上数字的特征来推断3的倍数特征是否成立,谁能说说你的观点。(让学生自由说)

如:13、16 、19的个位上是3 、6 、9 但不是3的倍数。所以这个观点是错误的。

2.请大家再猜猜3的倍数有什么特征?

学生自由发言,教师适当引导。

3.出示百数表。

(1)把3的倍数圈出来,横着看,前十个数,个位上分别是哪些数字?判断一个数是不是3的倍数,只看个位行吗?

(2)斜着看,你发现什么?

较小的3的倍数我们发现各数位上的数字和是3的倍数这个数就是3的倍数,那么老师随便写一个数来验证一下较大的数是否也有这样的特征。654÷3=218 是3的倍数,那么看看是否符合这个特征?6+5+4=15 15÷3=5

4.小结:一个数各数位上的数字的和是3的倍数,这个数就是3的倍数。

【设计意图】

通过猜想验证,让学生自我推翻对3的倍数特征的认知误区,从而使学生发现3的倍数的特征,并加深了对特征的理解。

三、巩固练习

1.巩固特征练习。

(1)为什么612是3的倍数?

(因为,6+1+2=9,9是3的倍数。 所以612是3的倍数。)

(2)523是3的倍数吗?为什么?

(因为,5+2+3=10,10不是3的倍数,所以523不是3的`倍数。)

2.练习。

(1)判断下面的数是不是3的倍数。

14 35 45 100 332 876 74 88

说说你是怎样判断的?

3.下面的数是3的倍数吗?你发现什么?

333 369 3966 99936

99999999999 333333333 66666666

我发现:各个数位上的数字都是3的倍数,这个数就是3的倍数。

4.谁能很快地判断下面两个数是不是3的倍数。

9639662 96396621

说说你的好方法与大家交流。(弃3 6 9 法)

5.下列数中3的倍数有________________。

14 35 45 100 332 876 74 88

6.既是2和5的倍数,又是3的倍数的最小三位数是多少?

7.下面哪些数是3的倍数?在下面的( )里面“√”。

42 78 111 165 655 5988

( ) ( ) ( ) ( ) ( ) ( )

49 95 311 82 20xx 2222

( ) ( ) ( ) ( ) ( ) ( )

8.在方框里填一个数使它是3的倍数,你有多少种填法?

1 3 可以填:_________________________。

5 0 可以填:_________________________。

6 3 可以填:_________________________。

学法指导:要知道方框里面填什么,先想另外两个数的和是几,再想想方框里面填多少能让它们的和是3的倍数。

四、课堂总结

通过本节课学习你有哪些收获?

3的倍数的特征教学设计 篇3

教学内容:义务教育教科书五年级下册第二单元第10页例2.

教学目标

知识与技能:掌握3的倍数的特征,能正确判断一个数是否是3的倍数。

过程与方法:通过自主探究的活动,培养学生的推理、观察、概括能力。

情感态度与价值观:渗透猜想,验证的思想,使学生感受到生活中蕴藏着丰富数学知识。

教学重点:认识并掌握3的倍数的特征。

教学难点:通过概括3的倍数的特征掌握一定的数学思想和方法。

教学准备:微视频、微练习题

教学流程:

一、 导入:

昨天同学们已经看了微课视频,微课视频主要内容是什么?你学会了什么?还有那些不懂得的地方?你有什么问题想要在课堂上解决的?

这节课我们带着大家的问题一起再学《3的倍数特征》,板书课题。

二、新授课

我们已经掌握了2和5的倍数的特征,根据什么来判断的?

同学们猜测一下:什么样的数是3的倍数呢?

1、个位上是3、6、9的数是3的倍数吗?

你能举出相反的.例子吗?(学生举例)

2、圈数探索:(下面请大家拿出百数表,在百数表中圈3的倍数。快速浏览一遍所圈的数,说说3的倍数个位上可以是哪些数字?

3、提问:像判断2和5的倍数那样,只看个位上的数字来判断3的倍数,行不行?

4、换位探索:引导发现3的倍数与数字的顺序无关。

(1)老师发现一个有趣的现象:百数表中有些数,比如27和72,都是3的倍数,像这样的数你还能说出几对来吗?这说明什么?(如果一个数是3的倍数,那么调换各个数位上数的顺序,同样还是3的倍数。)

(2)再出示几个3的倍数(三位数),交换各数位上数的顺序,让学生检验是不是还是3的倍数。

到底怎样的数是3的倍数呢?

(3)观察百数图3的倍数的特点,斜着看,你有什么发现?

(4)学生汇报发现规律斜着看,3的倍数各位上数的和是3的倍数。

(5)看书验证(师:看书,验证自己的看法是否正确,并一边看书一边划出关键的词语。)

5、教师小结:一个数各位上数的和是3的倍数,这个数是3的倍数。

三、微练习题讲练。

四、巩固练习

1、在下面每个数的□里填一个数,使这个数有因数3,它们各有几种不同的填法?

4□ 3□5 □12 76□ 198□

2、能力练习

判断下面的多位数能否被3整除,并说说你有什么好办法?

33336669999 12345678987654321

3、把表中9的倍数涂上颜色,并思考:9的倍数都是3的倍数吗?反过来呢?

五、全课小结,延伸新知。

1.同学们通过昨天微课视频的学习和今天这节课的学习,你学会了什么?你又有什么收获?

2.请大家应用今天的探究方法,课后研究其它整数的特征。

六、布置作业。

板书设计:

3的倍数特征

3的倍数特征:各位上数的和是3的倍数,这个数就是3的倍数。

3的倍数的特征教学设计 篇4

教学目标:

1、让学生通过猜想、观察、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

2、使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

教学重点、难点:

1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

2、难点:让学生通过观察讨论自主发现3的倍数的特征。

教学过程:

一、知识链接

按要求填一填。

1230352401860728590

2的倍数()

5的倍数()

既是2的倍数又是5的倍数()

指生交流答案。

师:说说你是怎么做的。是呀,我们已经学习了2和5的倍数的特征,2的

倍数的特征是什么?5的倍数的特征呢?那么既是2的倍数又是5的倍数的数你是怎么找的?对了,只要个位上是0就可以了。

想一想,我们用什么方法来研究2和5的`倍数?(列举、观察、验证的方法)这节课我们用猜想、观察、探究、验证等方法来研究3的倍数的特征,好不好?板书课题。

二、新知学习

师:在学习新课之前,先来猜猜3的倍数的特征是什么?

生可能猜测:个位是3、6、9

个位是1、3、6、9

师:是不是这样?谁能举例验证?

学生分别举出正例与反例进行验证。

师小结:看来只看个位并不全面,那么3的倍数的特征跟数的个位到底有没有关系呢?

师:请同学们拿出导学案,在小组里合作用除法计算找出3的倍数,并观察讨论得出3的倍数的特征。(要求:可以分工合作,比如:一生记录,余生计算,大一点的数可以借助计算器来完成。)

(学生小组合作完成)

师:哪个小组来交流你们的答案,你们找的3的倍数有哪些?

生交流

师:同意吗?找得非常准确,那你认为3的倍数的特征是什么?

生可能观察发现这些数的个位包括了0、1、2、3、4、5、6、7、8、9。

师引导:那么我们能不能说个位是0、1、2、3、4、5、6、7、8、9的数都是3的倍数呢?你能举例说明吗?

生举出反例推翻这个猜测。

师:由此看来,3的倍数的特征跟个位有没有关系?(没有),那它到底跟什么有关?请看大屏幕,57和7545和54123和231这些都是3的倍数,它们有什么特点?对,它们的位置交换了,还是3的倍数,还有132、213、321、312会不会也是3的倍数?

生快速口算,得出这些数也是3的倍数。

师:算得这么快!看来不管怎样交换它们的位置,都是3的倍数,3的倍数跟数的位置无关。再好好想想虽然数的位置交换了,但始终都是这些数,把这些数加起来会怎样?

生交流

师:加起来的和是3的倍数,它就是3的倍数。是不是这样?谁能举例验证。

那么加起来的和不是3的倍数,就不是3的倍数。举例验证。

师:怎样判断是不是3的倍数,谁来总结一下。

师小结:一个数各个数位上数的和是3的倍数,这个数就是3的倍数。板书。

同桌两个人互相说说。集体说一遍。

完成导学案练一练。师:有的数是2、5、3的共同倍数,哪个数?从表格中一眼就看出来了,是90和120,看看他们有什么特征?(各位是0,其它数位的数加起来是3的倍数。)

师:那么团体操里跳圆圈舞的,5人一组,交谊舞的2人一组,叠罗汉的三3人一组,那你说应派多少人参加团体操?生回答。

师;就是说这个数得是2、3、5共同的倍数。

三、课堂小结:

师:这节课我们通过猜想、观察、探究、验证等方法总结出3的倍数的特征,在这个过程中你有什么收获?

学生谈自己的收获。

三、课堂检测

1、把下面的数填在相应的括号里。

615287520452790100

2的倍数()

3的倍数()

5的倍数()

2、他们都是3的倍数,方框里该填几?

2、他们都是3的倍数,方框里该填几?

(1)213□213□213□213□

(2)68□4□356□0□

3的倍数的特征教学设计 篇5

教学目标:

1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。 2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点: 3的倍数的数的特征的归纳过程。 教具准备:小黑板、课件、小棒等。 教学时数:一课时

教学过程:

一、 复习导入。

为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

下面的数,哪些是2的倍数?哪些是5的倍数。 364、420、515、736、1028、905

让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)

为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

二、 猜想验证。

由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

三、 体验新知。

由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。

3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21 ……

并引导学生进行观察发现:3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。

四、归纳总结。

在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就 3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

五、实践应用。

当学生学会了老师猜数所用的.窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。 练习1:课本第19也做一做。 1,下列数中3的倍数有: —— —— 14 35 45 100 332 876 74 88

(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)

练习2:①第21页(5、6题),在基本练习的基础上我增设了3道发展题。

②把数娃娃送回家。题目如下:

这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

练习3:第21页(7题)

7、在口里填一个数字,使每个数都是3的倍数。 口7 4口2 口44 65口 12口1

(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)

六、拓展延伸

为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。

板书设计:

3的倍数的特征

一个数的各位上的数的和是3的倍数,这个数就是3的倍数。

3的倍数的特征教学设计 篇6

建构主义认为,学习是学生建构自己知识的过程,而学生的自主建构离不开教师的有效引领。教师能否适时采用适宜的方法引导学生探索,决定学生自主构建的效果。因此,教师不仅要为学生提供自主建构的机会,也要认识到自身对学生建构的促进意义,并采用行之有效的方法及时给学生提供积极的引导。作为知识载体的学习材料是学生获得感性经验的基础和前提,材料的选择、加工和使用,在学生自主建构新知过程中有着重要意义,更是教师开展有效引领的关键点。有时,呈现材料方式的调整和变化会成为有效引领的“金钥匙”,帮助学生走出认知的困顿和迷途,实现新知的自主建构。

如“3的倍数的特征”,学生自主建构的难度较大。其原因,一是容易产生定势。受先前2、5倍数特征的影响,会造成方法的负迁移,从而简单地判定某个数是不是3的倍数只要看个位,即如果个位是0、3、6、9,那么该数就是3的倍数,反之就不是。二是特征包含的要素多。3的倍数的特征比2、5倍数的特征复杂、需要关注的范围更广。

研究3的倍数特征,不仅要看每一个数位上的数以及各个数位上数的和,还要分析和与3之间的关系。三是没有现成的经验可用。由个位数的特点确定倍数的特征,学生有这方面的经验,但是从各位数的和上把握倍数特征的`经验缺乏,所以学生自主探索,发现特征的可能性较小。就第一个问题,找到解决办法容易。一般来说,我们会采用“欲擒故纵”的策略纠正学生的认识。

先让学生根据2、5倍数的特征猜想3的倍数的特征,并通过质疑引导学生举例否定猜想,排除只看个位数的判定办法。但是就后两个问题则很难找到有效的引领对策。

【教学片断一】

师:3的倍数究竟有怎样的特征呢?看老师这儿有一个数——123,是3的倍数吗?

师:老师还可以将这个数变一变,变出很多个3的倍数,信吗?

(随即交换各个数位上数的位置,写下1

32、213、2

31、312、321等数,引导学生逐个判断。)

师:奇怪了,这些数怎么都是3的倍数呢?观察这些数,你发现了什么?

生:都是由

1、2、3这3个数组成的。

生:??

师:为了便于我们观察和发现,咱们请计数器帮忙,看看能不能有新的发现。师:在计数器上拨出上面各数,会不会?各需要用几颗珠子?(依次出数,逐个鉴定珠子总数)师:数拨完了,你有没有什么发现?

生:用到的珠子总数相同,都是6颗。

师:我们发现当所需的珠子总颗数是6时,是3的倍数。那么,珠子总数还可以是几呢?想一个珠子总数,任意组一个数,并判断它是不是3的倍数。(学生自主活动)

师:发现了什么?

生:珠子总数是3的倍数,这个数就是3的倍数。生:各位数的和是3的倍数,这个数就是3的倍数。从以上教学过程看,采用拨珠的办法对发现特征有一定的作用。学生通过观察珠子总数不仅联想到了各位数的和,还能根据和形成各位数的和是3的倍数的猜想。但是仔细分析后,很容易发现这种引导方式的存在很大的缺陷。学生对各位数和的替代物——珠子总数的关注并不是自发的,而是教师直接告知的,这就极大地削弱了学生建构的成分。换句话说,这样的教学方式只是从表面上解决了自主建构的问题,却并没有触及本质,因而不是真正意义上的自主建构。

那么,除了拨珠的方法还有没有其他的引导方式呢?众所周知,采用对百数表中各个3的倍数特征的观察、分析,进而发现共同特征的策略,虽然符合研究特征的一般规律,但由于各个对象过于分散,而且各个数位上数的和不尽相同,不利于学生聚焦,进而发现各数的共同的本质特点。因此,常常会把百数表的研究作为感知材料,而不作深入探究。然而,如果对百数表内各数作进一步观察、思考和梳理,就会发现根据不同的和可以将3的倍数分成具有相同特质的几组:

3、12、21、30;

6、15、24、33、42、51、60;??如果就对这几组数进行观察并求同,就比较容易发现共同点,从而获得3的倍数特征的正确猜想。这是重要的信息,利用好了就能实现特征的自主建构。那么能否利用好这个教学资源,引导学生主动发现3的倍数特征呢?

感知组合律表明,空间上接近、时间上连续的事物,易于构成一个整体为人们所清晰地感知。如果改变这些学习材料的呈现方式,使之符合组合律提出的空间和时间的要求,那么就能实现有效引领。在教学时,我设计了如下的呈现方式。

【教学片断二】

师:3的倍数究竟有怎样的特征呢?你们说该怎么研究?

生:找一些3的倍数观察。

师:3的倍数有很多,我们就列举40以内的数吧。生:

3、6、9、12、15、18、21、24、27、30、33、36、39。 师:观察这些数,你发现了什么?

生:??

师:这样写数发现特征有点困难,我们换一种写法,看看能不能有所发现。师:1~10当中有哪些数?10~20当中呢?20~30、30~40当中呢?(边说边板书)3

9 12

18 21

27 30

39

师:发现了什么?

生:我发现第一列各位上数的和都是3,第二列是6,第三列是9,第4列是12。

生:各位上数的和是3的倍数。

生:一个数是3的倍数,它各位上数的和是3的倍数。

以上案例中,在学习材料呈现时做了三个方面调整和变化。首先,只出示3的倍数,不出示非3的倍数,使学生排除非3倍数特征的干扰,集中注意力研究3的倍数特征。其次,去掉百数表的外框,使各数重新组合成为可能。再次,改变从左往右的顺序,将数按固定的结构分组,并依次按从上至下的顺序排列,使得各位数和具有相同特点的自然上下对应,构成一个纵向观察的整体。同样的学习材料,不一样的呈现方式,带来了不一样的引领作用。没有改动之前的学习材料不能为学生提供任何的探究和发现特征的线索,而改动后的学习材料有着明确的导向,使学生主动发现3的倍数与各位数的和的特征有关,从而主动建构倍数特征。

以上教学实践表明,引导学生自主建构3的倍数的特征并,关键是要进行有效的引领。要实现有效引领,途径有很多,其中学习材料的选用不容忽视。根据心理学研究成果,深度挖掘学习材料的价值,打破原有的思维定势,适当改变材料的呈现形式是提高引导针对性和有效性的有力举措,能为学生自主探索新知扫除障碍,使学生走出建构受阻的困境,进而推动新知的自主建构进程。