返回首页
智远网 > 短文 > 教案 > 正文

《比例的意义和基本性质》教学设计

2026/01/26教案

此篇文章《比例的意义和基本性质》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《比例的意义和基本性质》教学设计 篇1

(优秀)《比例的意义和基本性质》教学设计

作为一名老师,通常需要准备好一份教学设计,教学设计是实现教学目标的计划性和决策性活动。我们应该怎么写教学设计呢?下面是小编整理的《比例的意义和基本性质》教学设计,希望能够帮助到大家。

《比例的意义和基本性质》教学设计 篇2

教学目标:

1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

教学重点:理解比例的意义和性质。

教学难点:应用比例的意义和性质判断两个比能否组成比例。

教学准备:多媒体课件一套。

教学过程:

一、渗透情感,导入新课

1、媒体出示国旗画面,学生观察,激发爱国情操。

天安门升国旗仪式

校园升旗仪式

教室场景

签约仪式

师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

2、媒体出示国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

签约仪式:长15厘米,宽10厘米。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

3、学生探索,发现问题。

师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的.特点,是什么呢?

学生自主观察、计算,发现国旗的长和宽的比值相等。

二、认识比例,发现特征

1、引出比例,理解比例的意义。

媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

并板书:2.4∶1.6 =3/2

60∶40=3/2

师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

并板书:2.4∶1.6 =60∶40

2、认识比例,知道比例各项的名称。

⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

⑵学生尝试说说什么叫比例。

⑶教学比例的各部分的名称。

自学课本第34页的第一段话,初步认识比例各项的名称。

出示其中一个比例,指出比例各部分的名称。

学生说说自己写的比例的各项的名称。

⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

⑸判断下列几个比能不能组成比例。

媒体出示,学生判断并说出理由。

下面哪组中的两个比可以组成比例,把组成的比例写出来。

⑴6∶10和9∶15 ⑵20∶5和1∶4

⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4

⑹思考:比和比例有什么联系和区别?

学生自主思考,集体交流,了解比例和比的联系和区别。

3、自主练习,发现比例的基本性质。

⑴媒体出示

8∶4=()∶() 15:10=()∶4 12∶()=()∶5

媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

⑵师提出问题:在一个比例中,它们项有什么特点?

⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

⑷集体交流,发现性质。

学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

⑸观察自己写的其它几个比例,验证发现。

⑹小结性质

学生尝试用完整的数学语言说一说自己的发现。

媒体出示学生的发现,教师指出这就是比例的基本性质。

三、巩固练习,提高认识

1、基本练习

判断,媒体出示

应用比例的基本性质,判断下面哪组中的两个比可以组成比例

⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50

⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5

2、拓展练习。

比一比,谁写得多。

在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

四、总结全课,升华认识

学生回顾全课,说说比例的意义和基本性质。

板书设计:

比例的意义和基本性质

2.4∶1.6 =3/2

60∶40=3/2

《比例的意义和基本性质》教学设计 篇3

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、旧知铺垫

1、什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

1.2:1.4=12:14=6:7

2.求下面各比的比值。

12:16:4.5:2.710:6

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)你知道这些国旗的长和宽是多少吗?

①出现各图中国旗的长、宽数据。

②测量教室里国旗的长、宽各是多少厘米。

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=

(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

①学生回答长、宽比值。

2.4:1.6=

②两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成=

(5)什么是比例?

在这一基础上,教师可以明确告诉学生比例的意义,并板书:

表示两个比相等的式子叫做比例。

(6)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

①学生猜想另外两面国旗长、宽的比值。

②求出国旗长、宽的比值,并组成比例。

③汇报。

如:5:=15:10=

5:=15:105:=2.4:1.6

==

2.做一做。

完成课文“做一做”。

第1题。

(1)什么样的比可以组成比例?

(2)把组成的比例写出来。

(3)说一说你是怎么找的。

(4)同学之间互相交流,检验各自所写的比例。

第2题。

(1)学生独立写比例,看谁写得多。

(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三巩固练习

完成课文练习六第1~3题。

四作业

课后记:

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的.意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?]

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4:和5:2

:和:0.2:和1:4

3.用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:=

(2)半径的比等于直径的比:=

(3)半径的比等于周长的比:=

(4)周长与直径的比:=

二探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

《比例的意义和基本性质》教学设计 篇4

素质教育目标

(一)知识教学点

1.使学生理解掌握比例的意义和基本性质。

2.认识比例的各部分的名称。

(二)能力训练点

1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2.培养学生的观察能力、判断能力。

(三)德育渗透点

对学生进一步渗透辩证唯物主义观点的启蒙教育。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教具学具准备:

小黑板、投影片、投影仪。

教学步骤

一、铺垫孕伏

教师出示复习题,回忆有关比的知识。

1.什么叫做比?

2.什么叫做比值?

3.求下面各比的比值:

4.上面哪些比的比值相等?

学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

二、探究新知

1.比例的意义。

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是______;

第二次所行驶的路程和时间的'比是______。

这两个比的比值各是多少?它们有什么关系?

(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

师问:什么叫做比例:组成比例的关键是什么?

生答:表示两个比相等的式子叫做比例。(板书)

引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)

(3)做一做

下面哪组中的两个比可以组成比例?把组成的比例写出来。

①6∶10和9∶15

②20∶5和1∶4

第①题由教师引导学生完成,思路如下:

所以:6∶10=9∶15

其余各题分组讨论后由学生独立完成。

(4)填空

①如果两个比的比值相等,那么这两个比就()比例。

②一个比例,等号左边的比和等号右边的比一定是()的。

2.比例的基本性质。

(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)

(2)让学生看下面这些比例,说出它的外项和内项是多少?

4.5∶2.7=10∶6

6∶10=9∶15

(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明。(师边板书如下)

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

(板书课题:加上“和基本性质”,使课题完整。)

(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

指名回答后,师板书:

(7)做一做

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

3.阅读课本第9、10页的内容并填空。

三、巩固发展

1.说一说比和比例有什么区别。

讨论后指名说明:

比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6∶9和9∶12

(2)1.4∶2和7∶10

4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

2、3、4和6

四、全课小结

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

五、布置作业练习一第3题。

《比例的意义和基本性质》教学设计 篇5

【教学目标】

1、理解比例的意义,认识比例各部分的名称。

2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。

3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

【教学重点】理解比例的意义和基本性质。

【教学难点】

应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

【教学准备】课件,扑克牌10张(2~10以及A),圆规一个。

【教学过程】

一、复习准备

(1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?

(2)求下面各比的比值,你发现了什么?

121634184、52、、7106

教师:同学们发现4、52、、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

二、探究新知

1、提出问题

这节课我们在比的知识基础上,进一步学习新知识。

揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质

2、探究比例的意义

课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

竹竿长(米)26……

影子长(米)39……

教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

学生讨论并写出比,教师选几个有代表性的比在黑板上板书。

教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

学生口答,教师板书:32=96,62=93……

教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

教师:29和36能组成比例吗?你是怎么知道的?

指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断

25和80200能否组成比例?并说明理由。

组织并指导学生完成书上第50页的课堂活动。

3、认识比例的各部分

教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

指导学生看书后汇报。

教师:请同学们分别找出32=96和62=93的内项和外项。

学生找出后,随学生的汇报教师板书:

要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

4、教学比例的基本性质

教师:前面我们已经探究发现了比例的`一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

5、运用比例的基本性质判断两个比是否能组成比例

教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?

学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。

三、巩固提高

(1)说一说比和比例有什么区别。

讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

(2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

2,3,4和6

四、全课总结

先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

五、课堂作业

(1)指导学生完成练习十一的第1题。

要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

(2)学生独立完成练习十一的第2题,教师订正。

《比例的意义和基本性质》教学设计7

教学内容:

义务教育课程标准实验教科书人教版数学六年级下册。

教学目标:

1.理解和掌握比例的意义和基本性质。

2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

教学过程:

一、认识比例的意义

1.出示小红、小明在超市购买练习本的一组信息。

(1)根据表中信息,你能选出其中两个量写出有意义的比吗?

(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

(2)算算这些比的比值,说说你有什么发现。

(学生说出自己的发现,教师用“=”连接比值相等的两个比。)

(3)说说什么叫比例。

(学生各抒己见,师生共同归纳后板书:比例的意义)

评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

2.即时训练。

A.判断下面每个式子是不是比例,依据是什么?

(1)10∶11(2)15∶3=10∶2

a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

3.教学比例各部分的名称。

(1)引导学生读教材(相关内容),认识比例各部分名称。

(2)集体交流。(教师板书:内项、外项)

(3)把比例写成分数形式,指出它的内、外项。

(4)任意写一个比例,同桌相互说一说比例各部分的名称。

二、探究比例的基本性质

1.填数。

(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。

〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

(2)观察思考:在填这些数的过程中,你有什么发现?

(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

A.先验证黑板上的比例式,再验证自己写的比例式。

B.概括比例的基本性质。同桌相互说一说比例的基本性质。

(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

2.即时训练。

应用比例的基本性质,判断下面的两个比能否组成比例。

3.6∶1.8和4∶24∶9和5∶10

小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

三、巩固新知,解决问题

1.猜数游戏。

在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

3∶5=6∶()()∶5=6∶()3∶5=()∶()

2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

《比例的意义和基本性质》教学设计 篇6

教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

教学目标:

知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:理解比例的意义和基本性质.

教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

教学准备:课件

教学过程:

一、激趣导入

1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

2、请同学们看大屏幕,课件出示P32页四幅图。

二、探究新知

1、比例的意义

师问:

①这四幅图中有什么共同的事物?(齐说)

②这四面国旗出现在什么场合或什么地点?(指生回答)

③这四面国旗的长与宽分别是多少?(指生回答)

④这四面国旗的大小相同吗?

说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

师问:

①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

那么我们能用什么符号可以把它们连接成等式?生:等号

谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

问题:

①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

②判断两个比能不能组成比例,关键要看什么?

③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

我们已经了解了比例的意义,下面我来考一考大家:

课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

2、比例各部分名称

师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

学生回答上面的问题,教师课件演示。

做一做:指出下面比例的内项和外项(课件出示)

4、5∶2、7=10∶6240/160=144/96

3、比例的基本性质(课件出示)

观察:2、4∶1、6=60∶40

思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

用下面的比例验证你的发现:

6∶10=9∶158∶2=20∶5

你能用一句话把发现的规律说出来吗?(找3名同学回答)

下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的'积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

师:看大屏幕(课件出示)2、4/1、6=60/40

问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

演示2、4/1、6=60/40→2、4X40=1、6X60

4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

三、巩固新知(课件出示)

做一做,相信你能行!

1、判断

①10∶5=2是比例。()

②在比例里,两个外项的积与两个內项的积的差是O、()

2、填空

①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

②2:9=8:()

3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

四、通过这节课的学习,说说你有什么收获或学到了那些知识?

五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

板书设计比例的意义和基本性质

2、4:1、6=3/260:40=3/2

2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

2、4:1、6=5:10/32、4;1、6=15:10

5:10/3=15:105:10/3=60:40

60:40=15:10

2、4X40=96在比例里,两个外项的积等于两

1、6X60=96个内项的积。这叫做比例的基本性质。

《比例的意义和基本性质》教学反思

本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。