返回首页
智远网 > 短文 > 教案 > 正文

加法运算定律教学设计

2026/01/29教案

此篇文章加法运算定律教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

加法运算定律教学设计 篇1

一、教学目标:

①认知目标:使学生初步理解整数加法运算定律对小数加法同样运用,并会运用这些定律进行一些小数的简便运算。

②能力目标:进一步培养学生分析、综合的能力和良好的计算习惯,从而培养了学生的数感。

③情感目标:培养学生做事认真、讲究方法、注重实效和团结合作意识。

二、设计意图:

本节课是在学生已经学习了“小数加、减法的意义和计算法则”和“小数连加、连减和混合计算”的基础上学习的.,在教学设计上力求体现以下几点:

1、密切联系生活。以同学们春游购物为主线。在计算每组商品的价线中经历发现问题——提出问题——解决问题的过程,感受数学来源于生活又应用于生活,激发学生学习的兴趣,积极、主动参与数学学习活动,在活动中得到情感体验。

2、改变学习方式。从问题出发,提出猜想,通过自主举例、验证,合作交流,探索出整数加法运算定律同样适用于小数加法的运算,在实现这一目标的同时,培养学生的演绎推理能力及应用意识等多元目标。

三、教具准备:

自制课件

四、教学过程:

㈠创设情境,初建表象

出示“春游购物”情况表,让学生仔细观察,哪几组商品的价线刚好合并成整元数?并根据这些信息,说说怎样判断两个小数能否合并成一个整数?

㈡自主探究,学习新知

1、回忆定律

说一说整数加法有哪些运算定律?

2、自主探究,合作交流

①问题:整数加法运算定律对小数加法也适用吗?

②先独立举例验证,然后小组合格交流。

③小组汇报交流结果

结论:整数加法运算定律对小数加法同样适用

3、解决问题,掌握方法

出示小明所买商品及其价格。

①学生独立计算。(教师巡视选择有代表性的算法)

②比较算法,哪一种算法更简便?

③小结:整数加法运算定律可以使一些小数加法计算简便。

4、尝试练习,理解算法

学生独立完成“做一做”,教师巡视、关注学生对简便方法掌握情况。

5、看书质疑

㈢巩固新知,拓展应用。

㈣全课总结

这节课你学到了什么?还有没有什么问题?

加法运算定律教学设计 篇2

加法运算定律教学设计

在教学工作者开展教学活动前,编写教学设计是必不可少的,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计应该怎么写呢?下面是小编精心整理的加法运算定律教学设计,欢迎阅读,希望大家能够喜欢。

加法运算定律教学设计 篇3

教学目标:

1、结合具体情境,理解整数加法运算定律水小数同样适用,并会应用加法运算定律和减法的运算性质比较熟练地进行小数加、减法的简便计算。

2、在解决问题的过程中,体会数学与现实生活的密切联系。

教学重点:能应用加法运算定律和减法的运算性质进行小数加、减法的简便计算。

教学难点:在解决问题的过程中,体会数学与现实生活的密切联系。

教具学具:多媒体课件

教学过程

一、情境导入

师:同学们,以前我们学习了哪些加法运算定律?生:加法交换律和加法结合律。

师:你能用字母把它们表示出来吗?(学生说,教师板书)生:加法交换律a+b=b+a;加法结合律a+b+c=a=(b+c)。师:我们学这些运算定律的目的是什么?

生:学这些运算定律是为了帮助我们进行简便计算。

师:下面的.每组算式两边的结果相等吗?计算后,你发现了什么?

3.2+0.5○0.5+3.2(4.7+2.6)+7.4○4.7+(2.6+.4)生:相等,两个小数相加,交换加数的位置,和不变。三个小数相加,先把前两个小数相加,再加第三个数,或者先把后两个数相加,再加第一个数,结果不变。

师:整数加法的运算定律在小数加法的运算定律页同样适用。应用这些运算定律,可以使一些小数计算简便些、我们今天就学习整数加法运算定律推广到小数。(板书)

二、自主探究

出示例4.计算0.6+7.91+3.4+0.09

师:上面的算式属于什么算式?我们应该怎样计算呢?

生:上面是连加算式。按照运算顺序,从左往右计算,计算出的小数如果末尾有0要去掉。

师:自己试着计算一下。(学生独立完成,板演)0.6+7.91+3.4+0.09=8.51+3.4+0.09=11.91+0.09=12

师:观察上面的算式,想到其他的计算方法吗?生:整体观察算式发现,如果交换7.91和3.4的位置,这样0.6与3.4、7.91与0.09都可以凑整计算,也就是说在运用加法交换律后,再继续使用加法结合律就可以使计算更简便些。

师:你会解答吗?

(学生独立完成,板演展示)0.6+7.91+3.4+0.09

=(0.6+3.4)+7.91+0.09)=4+8

三、探究结果汇报

师:通过上面的学习,把整数加法运算定律推广到小数,你有哪些收获?

生1:加法交换律和加法结合律在小数加法中同样适用,运用这些运算定律,可以使得计算简便些。

生2:计算小数加、减法,可以按照从左往右的顺序计算,也可以根据算式的特征,灵活选择运算定律进行简便计算。

四、师生总结收获

师:通过本课时学习,你有哪些收获?

生:整数加、减法中的运算定律对小数加、减法同样适用,在计算时,我们要先观察算式中的数据,根据数据的特点选择合适的简便算法。

加法运算定律教学设计 篇4

学习目标:

1、通过尝试解决实际问题,观察、比较、发现并概括加法交换律加法结合律。

2、初步学习用加法运算定律进行简便计算和解决实际问题,培养简便计算意识,提高解决问题的能力。

3、在数学活动中获得探究数学运算定律的基本体验和一般方法,培养独立思考和主动探究的意识和习惯

学习重点:探索和理解加法运算定律。

学习难点:获得探究数学运算定律的基本体验和一般方法。

学习活动过程:

一、创设情境,引入新课

1、播放FLASH动画“朝三暮四”的成语故事,并列式。

2、师:观察两道算式,它们有什么相同点、有什么不同点?

3、引入新课:猴子吃橡子的故事中蕴藏着什么数学奥秘呢?加法运算有什么规律呢?

二、探究新知,掌握定律

(一)探究加法交换律。

1、在情境中初步感知规律。

(1)创设问题情境。

多媒体演示李叔叔骑自行车旅行的'情景,请同学们仔细观察,图中告诉我们哪些信息?要解决的问题是什么?

(2)尝试解决问题。

①要求李叔叔今天一共骑了多少千米,可以怎样列式计算呢?

140+56=96(千米);56+40=96(千米)。

讨论为什么要用加法?(这两道题都是要把两个数合并成一个数,就要用加法计算。)

②40+56和56+40这两个算式计算结果相等,可以用什么符号连接?40+56=56+40

2、在枚举中验证规律。

(1)观察思考。

观察这一组算式,你能发现些什么?(在这组加法算式中,两个加数交换位置,和不变。)

(2)猜想验证。

请同学们先自己在练习本上举几个例子验证一下。

(3)交流汇总。

3、在比较中概括规律。

(1)总结规律。

你能用自已的话说出你发现的规律吗?并给你发现的规律命名。(任意两个数相加,交换加数的位置,和不变,这就是加法交换律。)

(2)用符号表示加法交换律。(a+b=b+a)

4、在练习中应用加法交换律。

(1)完成课本练习五第2题部分题目。

(2)课本第18页“做一做”第1题。

(二)探究加法结合律

1、在情境中初步感知规律

(1)出示主题图,分析题目的已知条件和问题,然后让学生自己列出算式计算。

(3)组织学生交流,展示各种算法。

(88+104)+96=88+(104+96)比较等号左右两边的算式的异同?

2、在枚举中验证规律。

3、在比较中概括规律,并用符号表示加法结合律。

小结:通常用(a+b)+e=a+(b+)表示加法结合律。

4、在练习中应用加法结合律。课本第18页“做一做”第2题。

三、运用新知,巩固定律

1、练习五第1题。

2、练习五第4题。

四、回题反思,全小结

这节课,我们通过观察、发现、猜想、验证学习了加法交换率和加法结合律。

加法运算定律教学设计 篇5

教学目标:

1、知识与技能:让学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程与方法:让学生经历“猜想——验证——结论”的过程发现并概括出运算律。

3、情感与态度:让学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

让学生经历“猜想——验证——结论”过程,发现并概括出运算律。

教学准备:

活页练习题

教学类型:

随堂课

教学过程:

一、加法交换律

(一)故事引入,得出猜想

1、讲故事

(同学们想听故事吗?老师今天给大家讲个《朝三暮四》的故事。)

古时候,有个老人养了一群猴子,这一天,老人对猴子说:“现在粮食不多了,要省着点吃。以后每天早上吃3个饼,晚上吃4个饼,怎么样?”猴子一听,怎么早上吃的比晚上还要少,不干,抗议!老人眼珠一转计上心头,马上改口说:“那么早上4个饼,晚上3个饼,好不好?”猴子一听早上多了一个饼,自己占便宜了,这才开心的答应了。

2、适设问

猴子占到便宜了吗?为什么?

3、巧引用

引:也就是什么没变,只是什么变了?(也就是猴子一天一共吃的饼个数没有变,只不过是早晚吃的个数换了换。)

4、活板书

早上吃3个饼,板书3,晚上吃4个饼,板书4,一共吃了3+4个饼,也就是7个饼。早上吃4个饼,晚上吃3个饼,一共吃4+3个饼也是7个饼,所以3+4=4+3。(猴子占到便宜了吗?)

5、细观察

观察等号两边的算式,你发现什么?(数不变,符号不变,和不变,位置交换)

6、得猜想

是不是任意两数相加,交换位置,和都不变呢?这只是我们的猜想,需要验证。怎样来验证呢?我们可以像这样举例子。

(二)验证猜想,得出结论

1、举实例

你能举出这样的例子吗?自备本上写一个。

谁先来?4+5=5+4你怎么知道相等的?左边,4+5=9,右边5+4=9,所以两边相等。所以下面请你这样说:左边4+5=9,右边5+4=9,所以4+5=5+4。谁再来说?1+6=6+1。这些都是几位数相加的例子?还有别的例子吗?12+11=11+12,这个例子和上面的有什么不同?还有别的吗?100+22=22+100,这个例子又有什么不同。还有吗?我们就不说了,用……表示。

评价:同学们举的例子都很好,不但想到一位数加一位数的例子,还想到一位数加两位数,两位数加一位数等等,这样各种类型的例子越多,验证的猜想也就越可靠。

2、得小结

这时,我们通过验证就可以来下结论了,谁能说一说?

两数相加,交换加数的位置,它们的和不变。这叫做加法交换律。

3、想简写

用语言文字叙说比较麻烦,大家能不能用自己喜欢的符号、图形、字母等把发现的`规律表示出来呢?在自备本上试着写一写。教师巡视,让部分学生上台展示创意,并让学生解释说明。

4、得结论

看来,用符号、字母等表示就是简单!在数学上,我们统一用字母a、b来表示两个加数,可以写作a+b=b+a这就是加法交换律,请大家读一读。

其实一年级你们就接触过加法交换律,看!数的分成,对吗?二年级也学过,笔算加法并交换加数位置来验算加法,是不是也是交换律?

二、加法结合律

过渡:刚刚,我们研究了两个数相加,发现了交换律,告诉你哦,数学家们研究了三个数相加,也发现了一个很重要的定律呢,你们想知道吗?

1、出示定律

请你们自己读一读,你能理解吗?三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。

2、分析定律

我们一起来分析。“三个数相加”,懂吗?谁来举一个三个数相加的例子。简单点的。4+6+8。先把前两个数相加,再加第三个数,什么意思?也就是先算几加几?再加几?为了强调先算什么,老师在4+6外面加上括号。或者先把后两个数相加,再加第一个数,也就是先算?再加几?我们只要怎么办?在6+8外面加上括号就行了。和不变吗?我们要计算。左边先算4+6=10再加8等于18,右边先算6+8=14,再4加14等于18,所以(4+6)+8=4+(6+8)

3、观察发现

观察等号两边的算式,你发现什么?特别是什么没变?位置没变。

4、自由验证

那么是不是三个数相加,位置不变,先把前两个数相加再加第三个数,或是先把后两个数相加,再加第一个数,和都不变呢?这虽然是数学家验证的结论,但我们学习数学要抱着怀疑的学习态度去学,别人说的就一定对吗?只有自己验证了,你才能说这个结论是对还是错。

你该怎么样验证呢?举例子。

就近五人一组合作交流每人举一个例子其中一个人记录。注意一定要左右算一算,看是不是和不变。

5、汇报交流

谁先说?左边……右边……所以……。这是几位数相加的?还有别的吗?这个例子和前面的有什么不同?还有不同的例子吗?还有吗?我们用……表示

6、事例验证

同样的,我们也可以举出生活中的事例来证明。看,我们班男同学34人,女同学21人,后边还有听课的老师12人,问一共多少人?可以怎样算呢?我们可以先算男同学的人数和女同学的人数,再加老师的人数,也可以先算男同学的人数和老师人数,再加上女同学人数,还可以先算老师人数和女同学人数再加上男同学人数。虽然运算顺序变了,但是都是求总共人数,所以和不变。

7、得出结论

现在我们可以肯定的说,数学家的结论正确吗?请你读一读,看看大家这次读得懂吗?如果用a、b、c来表示这三个数,结合律怎么表示呢?谁来表示一下?

8、板书课题

今天我们发现的加法交换律和加法结合律我们书中的小朋友也发现了找出来读一读,看看和我们总结的一样吗?我们把加法交换律和加法结合律统称“加法运算定律”你们都掌握了吗?下边我就来考考你们。

三、巩固练习

1.下面各题中分别运用了什么运算律?(以手势进行判断,用手掌代表加法交

换律,拳头代表加法结合律。)

82+0=0+82

●+★=★+●

(84+68)+32=84+(68+32)

75+(48+25)=(75+25)+48

(注意引导学生发现第4小题是运用了加法交换律和加法结合律)

2.填空练习。

(45+36)+64=45+(□十□)

560+(140+70)=(560+□)+□

18+(24+82)=(18+□)+□

小结:看来运算律真有用,可以使计算变得很方便,大家把加起来是100的两个数放到一起先加,这可真是个好办法。

3.那么这两题要怎么算更简便!

25+32+4572+43+28

四、拓展延伸

著名数学家高斯以很快的速度算出了这样一个算式你行吗?

1+2+3+4+......+99

五、全课总结:

通过今天的学习,你掌握了什么?分别说一说。

加法运算定律教学设计 篇6

【三维目标】:

1.通过学习,使学生理解和掌握加法交换律和结合律。

2.通过学习,让学生学会用符号或字母表示加法交换律和结合律。

3.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

4.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

【过程方法】:

通过观察比较、归纳的方法、来进行教学。

【教学流程】:

一、情景导入

师:同学们你们喜欢体育活动吗?谁来说说你最喜欢哪项体育活动(学生说了他们各自的爱好,老师都给予了肯定)看来同学们都非常爱运动,俗话说的好,“会运动的孩子就会学习,就会生活。”

师:请同学们观察课本27页主题图,你从图中发现了哪些数学信息。(要求学生根据图说出了与数据有关的信息)

师:根据这些信息,你能提出哪些用加法计算的问题。

师:同学们提出的问题都非常的好,今天这节课我们就来研究其中的两个问题。

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

二、探索加法交换律:

师:首先我们来解决第一个问题,怎样烈式?

生:40+56=96(千米)

师:还可以怎样列式呢?

生:56+40=96(千米)

师:由于这两个算式的结果相等,所以我们可以写成:40+56=56+40

师:请孩子们观察这两道算式有什么相同点和不同点?

生:相同点是都是40和56在相加,不同点是两个加数位置不同(交换了一下)。

师:你能举个象这样的例子?(学生非常踊跃)

师:同学们能说出这么多的例子,一定是发现了什么规律吧?把你的想法和同桌交流一下。(等待学生的交流)谁来把你的想法说给我们听一听。

师:(学生们有的是用自己的话概括,教师适时引导)两个加数相加,交换加数的位置和不变,叫做加法交换律。(板书加法交换律)

师:这样的例子有多少个?

生1:很多。

生2:无数。

师:那怎样来表示所有的例子呢?请同学们用自己的方法在随写本上写一写。

(有的学生用的是省略号、有的是图形、有的是字母、有的是汉字,通过和学生的交流都开始朝图形和字母去表示这个规律,并让学生到黑板上板书)。

师:同学们真不简单,能想出这么多方法来表示加法的交换律,通常我们是用a+b=b+a来表示加法交换律,其中a、b可以是任意数。

三、小组合作学习加法结合律:

师:刚才我们通过解决第一个问题,发现了加法的`交换律,现在我们来解决第一个问题,看看有没有新的发现。

师:同学们先在下面做一做,点一生到前面做。

师:这位同学做的对吗?那它第一步求的是什么?解决的是什么问题?为了便于观察,我们把先算的打上括号,还是这个算式,怎样算比较简便?(强调算式的书写顺序不变)

(学生说,老师写)我们给先算的打上括号

(88+104)+96 88+(104+96)

=192+96 =88+200

=288(千米) =288(千米)

这两个算式的结果相等,所以我们可以写成

(88+104)+96=88+(104+96)

大家仔细观察这两个算式,又有什么相同点和不同点呢?

生:都是相同的数在相加,只是运算顺序不一样,但结果相等。

再比较下面两个算式,你又发现了什么?(小黑板出示)

(69+172)+28○69+(172+28)

155+(145+207)○(155+145)+207

(聪名的学生一看就知道用等号连接,但有的同学有点怀疑,让小组同学分工验证。

师:请同学们小组交流发现的结论,最后概括出规律。)

师:(学生的看括不规范)三个加数相加时,可以先把前两个数相加,也可以先把后两个数相加,和不变。叫做加法结合律。

师:谁上来用字母把它的规律表示出来。(a+b)+c=a+(b+c)

(揭示课题)今天我们所学的加法交换律和加法结合律都叫做加法运算定律。下面老师想出几个题目考考大家,看看大家对新知识掌握的怎样,有没有信心,。

四、巩固应用

1.根据加法运算定律在□填上适当的数,并说说依据了加法的什么定律?

□+270=270+80

(33+16)+84=33+(16+ □)

□ +56= □+44

400+500= □ + □

(25+□)+72= □ +(28+72)

2.下面算式符合加法交换律吗?为什么?

45+59=45+59 90+10=5+95

3.P28/做一做

4.P31/4、1

5.P31/3