返回首页
智远网 > 短文 > 教案 > 正文

分数与除法教学设计

2026/01/31教案

此篇文章分数与除法教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

分数与除法教学设计 篇1

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的`(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页"做一做"

分数与除法教学设计 篇2

教学目标

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

教学重难点

理解分数与除法的关系

教学准备

每人准备4张同样大小的圆片

教学过程

一、引入情境,揭示例题

口答题

1、把8块饼干平均分给4个小朋友,每人分得几块?

2、把4块饼干平均分给4个小朋友,每人分得几块?

3、把3块饼干平均分给4个小朋友,每人分得几块?

怎样列式?板书3÷4

引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

不满1块那该怎么表示呢?

生:小数或分数

二、实践操作探索研究

师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

学生动手操作

教师巡视,了解学生是怎样的`想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

师:接下来我们请同学汇报一下他们研究所得结果。

(生讲述这样分的理由)

教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

总结:把3块饼干平均分给4个小朋友,每人分得3/4块

板书:3÷4=3/4(块)

师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

学生口述理由。板书:3÷5

师:想想该怎么去分?把你的想法和同桌交流下。

指名让学生说说思考过程。

板书:3÷5=3/5(块)

师:如果分给7个小朋友呢?

学生口述3÷7=3/7(块)

三、归纳总结,围绕主题

师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

板书课题:分数与除法的关系

生相互交流。教师板书:被除数÷除数=

师:除法算式又可以写成什么形式?

生补充:被除数÷除数=被除数/除数

师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

生:a÷b=a/b

师:这里的a和b可以取任何数吗?为什么?

生:除数不能为0。

师:分数和除法之间的关系,你有什么好的方法记住它们吗?

生交流讨论并回答

师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

四、巩固练习,拓展延伸

师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

集体校对。

师引导:比较上下两行有什么不同?

在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

师:接下来请大家独立完成“试一试”两小题。

然后小组交流你是怎么想的?

师:把7分米改写成用米作单位,可以列怎样的除法算式?

生:7÷10=7/10(米)

师:第二个呢?

生:23÷60=23/60(时)

师:独立完成“练一练”的第二题

集体讲评校对。

师:完成“练习八”的第一题口答

师:完成“练习八”的第三题

学生在书本上完成,

教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

五、课堂作业

完成“练习八”的第二题

教后反思:

本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<

分数与除法教学设计 篇3

一、教学内容:分数与除法,教材第65、66页例1和例2

二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点:1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:圆片、多媒体课件。

五、教学过程:

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

(三)教学实施

1.学习教材第65 页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

( 3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

( 3 )加深理解。(课件演示)

老师:4(3)块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4 )巩固理解

① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

4.归纳分数与除法的关系。

( l )观察讨论。

请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的.除数。

( 2 )思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)

②1米的8(3)等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

②1米的4(3)与3米的4(1)一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

分数与除法教学设计 篇4

教学设想:

1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

教学目标:

1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

2、培养学生动手操作、合作交流和灵活运用知识的能力。

3、通过学习,培养学生转化的数学思想和勇于探索的精神。

教学重点:

理解分数与除法的关系。

教学难点:

具体体会每一个商的由来和表示的含义。

教学过程:

一、感知关系

1、问题:把6米长的绳子平均分成3段。每段长多少米?

把1米长的绳子平均分成3段。每段长多少米?

提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

板书:被除数÷除数=被除数/除数

二、探究关系

1、、验证关系

(1)通过动手操作验证

出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

反馈验证

引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

板书:3÷4=3/4

(2)运用分数意义验证

师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

出示例[2]:17分是几分之几小时?

引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的`?)

1÷60=1/60 17÷60=17/60(小时)

引导小结:分数与除法之间的关系,还可以用来转化名数。

2、揭示关系

师:通过刚才的验证,你得出了哪些结论?

①两个数相除,当商不是整数时,可以用分数来表示。

②被除数÷除数=被除数/除数。

师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

联系

区别

除法

被除数

除号

除数

是一种运算

分数

师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

三、巩固关系

1、强化分数与除法的关系。

① P.82 2 ②(P.82 4)

③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时

④在括号里填上合适的数

( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )

2、比较练习,完成P.82 3

①学生选择条件,列式解答。

②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

四、总结提升

师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?

分数与除法教学设计 篇5

教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

教学目标:

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学过程:

一、复习引入

1.列式,说说数量关系。

小明2小时走了6km,平均每小时走多少千米?

速度=路程÷时间

2.填空。

2/3小时有()个1/3小时,1小时有()个1/3小时。

3.口算,说说分数除以整数的计算方法。

(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

4.引入课题。

我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

板书课题:一个数除以分数。

二、解决问题,发现算法

1.理解题意,列出算式。

(1)出示例3。

(2)学生读题,理解题意。

(3)列出算式,说出列式根据什么数量关系。

板书:2÷(2/3)(5/6)÷(5/12)

2.探索整数除以分数的计算方法。

(1)2÷(2/3)如何计算呢?让我们画出线段图看看。

(2)先画一条线段表示1小时走的.路程(边说边板书),怎样表示2/3小时走了2km这个条件?

(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

(4)根据学生的回答把线段图补充完整,板书计算思路。

先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

再求3个1/3小时走了多少千米,算式:2×(1/2)×3

(5)找出计算方法。

板书:(乘法结合律)

现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

强调:被除数没有变,除号变乘号,除数变成了它的倒数。

(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

板书,学生齐读。

3.探索分数除以分数的计算方法。

(1)让学生尝试计算5/6÷5/12。

我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

(2)学生汇报,教师板书:

(3)为什么写成×(12/5)?

(4)怎样验证这种计算结果是正确的?

学生可能回答:

①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

再求12个1/12小时走了多少千米,算式是5/6×1/5×12

②用乘法验算。

(5)回答“谁走得快些”。

(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

让同桌学生相互议一议,再指名回答。

(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

强调:除以一个不等于0的数。

齐读法则。

三、巩固练习

1.口算。(采用口算对折卡片)

(1)不能约分的2÷3/5=1/3÷2/5=

(2)能约分的3÷3/4=2/7÷6/7=

2.完成课本第31页“做一做”第1题,填在书上。

第2题,写在课堂练习本上,写出过程。

3.直接写出得数。

1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

四、师生共同小结

1.这节课我们学习了哪些知识?

2.一个数除以分数的计算方法是什么?

五、布置作业(略)

分数与除法教学设计 篇6

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的'孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

余数一定要比除数小。