《反比例》教学设计
此篇文章《反比例》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《反比例》教学设计 篇1
教学目标:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教法:自主探究,合作交流。
学法:小组合作交流。
教具:课件。
教学过程:
一、定向导学(5分).
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?(口答)
3、出示学习目标
1、理解反比例的意义,能根据反比例的意义。
2、正确的判断两种量是否成反比例。
二、自主学习(15分).
1、自学课本p47例2。
思考:
a、表中的`两种量是( )和( )。这两种量是不是相关联?为什么?
b、水的高度是随着( )的变化而变化 ,水的高度越( )杯子的底面积就越( )。
c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?
d、这个积表示( )表示它们之间的数量关系式是( )。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、合作交流(6分)
1、成反比例的量应具备什么条件?
2、数学书第48页的做一做,学生独立完成,集体订正。
四、质疑探究(4分)
举出生活中反比例关系的例子
五、小结检测(4分)。
1、说说反比例的意义,如何判断两种量是否成反比例。
2、检测
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
3、第51页8题
4、第51页9题
六、堂清 (6分)
p51练习九第10、11、12题。
板书设计:
成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母表示: x×y=k(一定)
《反比例》教学设计 篇2
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:
20支铅笔、一个笔筒;相关课件;学生分小组(每组各一份观察记录单及讨论表格)
讨论填表 观察记录单
教学过程:
一、情境导入 揭示内容
1、课前谈话:同学们,有谁去过北京?你知道南昌到北京需要多长时间吗?我们来看一组信息:(媒体显示:1、火车图片及火车启动的声音,2、文字信息是:两年前,小红乘坐由南昌开往北京西的T168次列车,需要花19时11分到达,现在火车提速了,小红再次乘坐这趟列车,还需这么多时间吗?为什么?)
2、学生对上述问题发表意见。
3、教师揭示:下面,我们就带着这个问题进行今天的学习。
[反比例的量与日常生活中常见的数量关系联系得非常紧密,利用身边的例子引出学习内容,使学生深刻感受到数学就在我们身边,我们身边处处有数学,也能体会到数学知识能够解决实际问题,学到有价值的数学。]
二、小组协作 概括意义
(一) 活动一:(例4)
1、 教师出示一个笔筒,里面装着许多笔,请同学们仔细观察,记录老师每次拿笔的支数和拿的次数。
教师操作:每次拿10支 拿了2次;
每次拿5支, 拿了4次;
2、学生进行小组活动,观察后,以小组为单位,填写观察记录单。
3、 如果每次拿的支数分别是4、2、1时,你们能推算出相对应的拿的次数吗?(继续讨论填表)
4、 学生汇报观察记录单的填写结果。并且说一说你是怎样知道相对应的拿的次数?
5、 引导观察:在填、拿的过程中,你发现什么变了?怎样变的?什么没变?
6、 让学生说出几组相对应的乘积。
7、 小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
[数学教学是数学活动的教学,将学生熟悉的事情或操作性强的事例作为学生学习的内容,学生感觉亲切、贴近生活,易于理解,在观察中思考,在操作中体验,学生学得主动、学得积极,在填一填、拿一拿、猜一猜的活动中,自然而然地体会
了反比例的变化规律,为抽象概括反比例的意义奠定基础。]
(二) 活动二:(例5)
1、 教师谈话:与五(3)班的同学合作,老师感觉棒极了。下面我们来轻松轻松,参观一下邮政路小学的操场,看看他们在干些什么?(出示同学们在操场上做操的情景图)
2、 师:我们学校将举行“雏鹰起飞”广播操表演,需要挑选24名同学参加,请大家讨论一下,应该怎样站队,可以使每一行站的人数同样多。
3、 学生小组讨论,共同完成讨论表。
4、 学生小组汇报站队情况,电脑演示站队结果。(先演示每行站的人数,再出示站的行数;同时电脑上填出相对应的表格数据。)
5、 教师引导学生观察所填的表格,说一说,你又发现了什么?
6、 小结:在站队的过程中,每行站的人数变化了,站的行数也随着变化,但每行站的人数和站的行数的积即总人数总是一定的。
[利用信息技术这个平台,将学习内容形象再现,学生经过讨论,再通过电脑媒
体直观地看到24人站队的具体情况,深刻感受到站队的总人数不变,每队站的人数变化了,站的行数也随着变化。]
(三) 比较概括 巩固应用
1、 让学生比较两张表,说一说它们有什么共同的地方?
使学生明确:表中的两种量都是一种量变化,另一种量也随着变化,像这样的两种量成它为两种相关联的`量;它们的变化规律是:两种量中相对应的两个数的乘积总是一定的。
2、 揭示反比例的意义(阅读课本,明确反比例关系)
3、 如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
4、 完成第59页的“做一做”。
5、 表中的两种相关联的量,容易看出其变化规律,如果不给出表中的数据,让你直接判断两种相关联的量是否成反比例,你行吗?
6、 自己解决第59页的例题6,重点地说一说:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
7、 小结:虽然已经播种的公顷数和剩下的公顷数是两种相关联的量,但是它们的乘积是不一定的,所以不成反比例。
三、强化练习 发展提高
1、 先想一想,再在小组内说一说:
(1
(2
(3
和 的积总是一定的;
所以, 和 是成反比例的量。
2、 判断下面每题中的两种量是不是成反比例的,为什么?
(1)植树的总棵数一定,每人植树的棵数与人数。 ( )
(2)李叔叔从家到工厂,骑自行车的速度和所需的时间。 ( )
(3)华荣做12道数学题,做完的题和没有做的题。 ( )
(4)长方形的面积一定,它的长和宽。 ( )
(5) 小林拿一些钱买练习本,单价和购买的数量。 ( )
3、 机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获? 还有什么遗憾?
五、板书设计:
本节课有以下几个特点:
1、很好的抓住了学生的兴奋点,教师遵循学生的年龄特点和认知规律,将教材中的例题进行再创造,改成了学生熟悉的事例,设计精心,形式新颖,情境意识强,问题导向明确。从学生的实际出发,由实际生活引入,使学生感受数学就在身边。
2、教学过程中,教师为学生创造了轻松、民主的课堂氛围。教师与学生一道沉浸在数学活动中,从操作、观察、讨论、填表、比较、分析、概括等一系列循序渐进的活动里,逐步抽象出反比例的意义,在这个学习过程中,学生能够畅所欲言,主动学习。
3、充分利用电教媒体,新课的导入、活动的进行、习题的出示均由电脑显示,充分刺激学生的多种感官,调动了学生学习的积极性、加大了课堂教学的密度,提高了课堂教学的效率。
本节课很好的实现了教学目标,学生经历了操作、思考、讨论、比较等一系列活动,充分明确了反比例的意义,并能够正确地判断两种量是否是成反比例的量;在整个学习过程中,学生表现出的情感是积极的、向上的,每位学生都愿参与到学习活动中来,能与同伴很好交流、合作,体现出一丝不苟的学习态度和实事求是的学习精神。但其中有一道题学生的争议很大,即总路程一定时,已行路程和剩下的路程。全班还有许多同学认为是成反比例的量,这些同学忽略了两种相关联的量一定要乘积一定的时候,这两种量才是成反比例的量。这也暴露了学生在解决问题中思考的过程还不够灵活和全面。今后的教学过程中要加强对学生思维深刻性和全面性的培养。
《反比例》教学设计 篇3
【教材分析】
本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。
【教学目标】
1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;
2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;
3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。
【教学重点】掌握反比例的意义。
【教学难点】有条理地思考、判断成反比例的量。
【教学准备】多媒体课件
【教学过程】
一、联系生活,导入新课
1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?
(结合回答板书:相关联、比值一定、y/x=k)
2、判断下表中的两种量是否成正比例,为什么?
表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。
表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。
表3:不成正比例。数量和单价的比值不是一定的。
二、自主合作,探究发现
1、设疑引入(购买笔记本问题)
(1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。
(2)四人小组合作研究:
1、观察表格中的两个量有什么变化?
2、这种变化有什么规律?
3、这种规律与成正比例的量的规律有什么不同?
(3)全班交流。
1、观察表格中的两个量有什么变化?
单价变化(扩大),数量也随之变化(缩小)
2、这种变化有什么规律?
这两个量的乘积总是一定的。
板书:单价×数量=总价(一定)
指出:都是用60元购买笔记本
3、这种规律与成正比例的量的规律有什么不同?
①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。
②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。
(4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?
请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。
(5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)
单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。
这就是我们今天要认识的成反比例的量。(揭示课题)
2、试一试
师:我们继续来学习反比例,请看大屏幕:
(1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。
然后指名口答,全班校对。
(2)同桌合作讨论(出示要求)
算一算:相对应的两个数的乘积各是多少?
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(3)全班交流。
算一算:相对应的两个数的乘积各是多少?
(乘积都是72)
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
(这个乘积表示一共运的.水泥吨数,每天运的吨数×天数=总吨数(一定)板书)
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(略)
3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)
4、用字母式子表示反比例的意义。
教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?
根据学生回答,教师板书:x×y=k(一定)
三、巩固应用,深化发展
1、完成“练一练”
让学生判断每袋糖果的粒数和装的袋数是否成反比例。
(1)出示题目和要求
(2)把自己的想法和同桌互相说一说
(3)再全班交流、评议。
2、根据情况选择完成练习十三第6题
出示题目,学生独立思考后依次交流3个问题
3、根据情况选择完成练习十三第7题
(1)出示题目
(2)学生独立思考
(3)全班交流、评议。
4、判断下面每题中的两个量,哪些成反比例?
(1)用同样多的钱购买不同的笔记本的单价和数量。
(2)一个人的年龄与体重。
(3)长方形的面积一定,长方形的长与宽。
(4)长方形的周长一定,长方形的长与宽。
(5)X和Y是两种相关联的量。(机动)
X×Y=5 5×X=Y
四、全课总结,拓展延伸
今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。
《反比例》教学设计 篇4
《反比例》教学设计(15篇)
作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计是一个系统化规划教学系统的过程。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的《反比例》教学设计,欢迎阅读,希望大家能够喜欢。
《反比例》教学设计 篇5
第一课时
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的`实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
《反比例》教学设计 篇6
[教学目标]
1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.
2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.
[教学过程]
1.回顾、梳理本章的知识:
如同已经学过的有关方程、函数的内容一样,本章内容分为3块:
(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;
(2)数学研究:反比例函数的图象与性质;
(3)用数学解决问题:反比例函数的应用.
2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:
(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;
(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;
(3)形数结合——函数的.图象与性质的综合应用
2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x
POD的面积为________
3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.
例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。
(1)写出药物燃烧前、后y与x的函数关系式;
(2)研究表明,当空气中每立方米的含药量低于1。6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?
返回首页