返回首页
智远网 > 短文 > 教案 > 正文

比应用教学设计

2026/02/07教案

此篇文章比应用教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

比应用教学设计 篇1

【教学内容】:人教版小学数学一年级上册第47页内容。

【教学目标】:

1、认知目标:使学生认识并理解大括号和问号的意义,能借助图画正确分析题意。

2、技能目标:会用6的加法解决生活中的简单问题,初步感受数学与日常生活的密切联系,体验学数学用数学的乐趣。

3、情感目标:通过本节课教学,向学生渗透热爱大自然、保护环境等方面的教育,从而促进学生的健康发展。

【教学重、难点】:

重点:用6的加法解决生活中的实际问题。

难点:让学生学会观察、分析,能提出合适的数学问题,正确理解大括号和问号的意义。

【教学准备】:卡片智慧星贴画(板书用)

【教学过程】:

一、创设情境,生成问题。。

1、同学们,你知道现在是什么季节吗?(秋天)对,是秋天,秋姑娘呀,正忙着给勤劳的人们送去丰收和喜悦呢!美丽的秋姑娘也给咱们每个小组送来了一份礼物呢?(出示水果图形算式卡片,算式的数分别和小组数相符)大家能根据算式猜一猜,这些礼物各属于哪个小组吗?

【设计意图:激发学生兴趣,复习6的加减法运算,为后面的学习应用做铺垫】

2、师:刚才我们解决了这些问题,都用到了哪些知识呢?(生齐:6的加减法)

师:利用这些知识,还可以解决哪些问题呢?好,现在咱们还是随秋姑娘一起去大自然中转一转,看一看吧!(出示插图,导入新课)

二、探索交流,解决问题。

1、请同学们仔细观察图画,把看到的内容和同桌互相说一说。

【设计意图:培养学生初步的自主学习和小组合作的意识。】

2、继续观察图画,把你看到的内容和发现的问题在小组内交流,组长把解决不了的问题做好记录,然后师生共同解决。

【设计意图:在相互交流中,给每位学生提供了锻炼语言表达能力的机会,同时做到知识共享,这观察、交流的过程,本身就是学生感悟体验的过程,可以使学生从中感悟到自然美、家乡美,进而激发起热爱自然、热爱家乡的思想感情。】

3、各小组代表分别说出本组的疑难问题。对这些问题,先由学生解决,教师做适当补充讲解。

4、教学大括号和问号:

①师:图中还有哪些你以前没见过的数学符号?你知道它们代表什么意思吗?

【设计意图:有选择的解决实际问题。】

②找几名同学结合图画内容试着说说看。

【设计意图:让学生大胆猜想,尝试解决问题,体验独立解决问题的过程,同时享受成功的喜悦。】

③师解释并验证学生的猜想:大括号表示把两部分合起来,问号表示要求的问题。接着出示几种开口方向不同的大括号,引导学生理解大括号和问号合在一起表示的意义。

5、看图完成算式:

引导学生分析第一幅插图

秋天到了,同学们走出校园,来到美丽的`田野,准备捕捉几只昆虫做标本。画面上有几位同学正在捕捉蝴蝶?(生:4位)又来了几位同学?(生:2位)

我们要解决的问题是:画面上一共有几位同学呢?

学生独立完成图画下面的算式。然后指名回答,师板书:4+2=6

师问:根据这幅图画,你还可以提出哪些问题?

生1:图中有4个女生,2个男生,一共有几个同学?

生2:扎小辫的有3人,不扎辫子的有3人,一共有几人?

生答师板书:3+3=6

【设计意图:深挖教材,引导学生多角度分析问题,提倡算式多样化。】

引导学生分析第二幅图画

引导学生把第一幅图和第二幅图进行比较,发现不同之处,自己去表述图意,如有困难,可小组内交流。

三、巩固应用,内化提高。

学生独立完成“做一做”,然后说一说自己“想”的过程。

学生完成教材51页第13题:以小组为单位,让学生对着图画进行讲故事比赛,老师适当进行爱护动物,保护生态环境的教育,故事内容分别为:

图1:《天鹅湖》

图2:《小青蛙比本领》

图3:《小金鱼找朋友》

对优胜小组,每人奖励智慧星一颗。

【设计意图:巩固所学知识,同时教育学生保护生态环境,热爱大自然,通过奖励,鼓励学生积极参与课堂活动。】

四、回顾整理,反思提升。

师:通过今天的学习,你收获了什么?

生:我认识了“大括号”,并且知道了它的意义,还学会了根据问号的位置来确定列式方法,同时还学会了从生活中发现数学问题。

师:生活中处处有数学,希望你平时要留心观察,看周围还有哪些地方也隐藏着数学问题,比一比,看一看,做一个爱数学的小博士!

【板书设计】6和7的加减法的应用

(金色的秋天)贴画1贴画3

4+2=67-3=4

贴画2贴画4

3+3=67-4=3

教后反思:

本节课是在学习了1-5的加减法和6的组成的基础上,学习6的加法。在教学设计时以以美丽的秋天的情境引入,在情境中提出问题,发现问题,学习6的加减法。教学时我让学生充分动手操作,在写一写,说一说的环节中引导学生用3句话说说图的意思,为学习应用题做好铺垫。

比应用教学设计 篇2

教学内容:

教科书第8页的例4、练一练、练习三的第1~4题。

教学目标:

1.使学生联系百分数的意义认识“折扣”的含义,体会以及折扣和分数、百分数的关系,加深对查分数的数量关系的理解;

2.了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”的题型,能应用这些知识解决一些简单的实际问题。;

3.进一步感受数学和人民生产、生活的密切关系,体会到数学的价值。

教学重点:理解现价、原价、折扣三量关系;培养学生综合运用所学知识解决问题。

教学难点:通过实践活动培养学生与日常生活的密切联系,体会到数学的应用价值。

设计理念:数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

一、开门见山,

1.教学例4,认识折扣

谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

出示教材例4的场景图,让学生说说从图中获得了哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

在学生回答的基础上指出:把商品减价出售,通常称作“打折”。打“八折”就是按原价的`80%出售,打“八三折”就是按原价的83%出售。

强调:原价是单位“1”,原价×折扣=现价,区别降价多少元。

学生观察场景图。

二、探索解法

1.提出例4中的问题:《趣味数学》原价多少元?

启发:图中的小朋友花几元买了一本《趣味数学》?这里的12元是《趣味数学》的现价还是原价?在这道题中,一本书的现价与原价有什么关系?

追问:“现价是原价的80%”,这个条件中的80%是哪两个量比较的结果?比较时要以哪个量作为单位“1”?这本书的原价知道吗?你打算怎样解答这个问题?

进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

教师根据学生的回答板书:

原价×80%=实际售价

提出要求:你会根据这个相等关系列出方程吗?

请学生到黑板上板演。

2.引导检验,沟通联系:算出的结果是不是正确?

启以学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用15元乘以80%,看结果是不是12元。

学生讨论。

学生先说出自己的想法。

学生在小组里相互说一说,再在全班交流。

学生尝试列出方程。

学生独立验算,再交流检验的方法。

三、巩固练习”先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。

学生解答后再解读方程:你是怎样列方程的?列方程时依据了怎样的数量关系?你又是怎样检验的?学生小组内交流。

学生列方程解答。

四、拓展提高1.做练习三的第1题

学生读题后,先要求学生说出每种商品打折的含义,再让学生各自解答。

学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

2.做练习三的第2题。

先学生独立解答,再对学生解答的情况加以点评。

3.做练习三的第3题。

先在小组里相互说一说,再指名学生回答。

4.做练习三的第4题。

先让学生独立解答,再指名说说思考过程。

学生先相互说一说,再列式解答。

学生独立解答,集体订正。

学生小组交流。

学生独立解答。

五、全课小结本节课你有什么收获?商品的原价、现价、折扣之间有什么关系?

六、布置作业课后抽时间到附近的商场或超市去看一看,收集一些有关商品打折的信息,并自己计算商品的现价或原价。

比应用教学设计 篇3

一、内容与解析

(一)内容:对数函数的性质

(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

二、目标及解析

(一)教学目标:

1.掌握对数函数的性质并能简单应用

(二)解析:

(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

四、教学支持条件分析

在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程

问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

设计意图:

师生活动(小问题):

1.这些对数函数的解析式有什么共同特征?

2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

3.通过这些函数图象请从函数值的分布角度总结相关性质

4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

问题3.根据问题1、2填写下表

图象特征函数性质

a>10<a<1a>10<a<1

向y轴正负方向无限延伸函数的值域为R+

图象关于原点和y轴不对称非奇非偶函数

函数图象都在y轴右侧函数的定义域为R

函数图象都过定点(1,0)

自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

例1.比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106 log108 ⑵ log0.56 log0.54

⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

(1) log 3 m log 0.3 n

(3) log a m 1)

例2.(1)若 且 ,求 的取值范围

(2)已知 ,求 的取值范围;

六、目标检测

1.比较 , , 的大小:

2.求下列各式中的x的值

(1)

演绎推理导学案

2.1.2 演绎推理

学习目标

1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

学习过程

一、前准备

复习1:归纳推理是由 到 的推理.

类比推理是由 到 的.推理.

复习2:合情推理的结论 .

二、新导学

※ 学习探究

探究任务一:演绎推理的概念

问题:观察下列例子有什么特点?

(1)所有的金属都能够导电,铜是金属,所以 ;

(2)一切奇数都不能被2整除,20xx是奇数,所以 ;

(3)三角函数都是周期函数, 是三角函数,所以 ;

(4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .

新知:演绎推理是

的推理.简言之,演绎推理是由 到 的推理.

探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

所有的金属都导电 铜是金属 铜能导电

已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

大前提 小前提 结论

新知:“三段论”是演绎推理的一般模式:

大前提—— ;

小前提—— ;

结论—— .

新知:用集合知识说明“三段论”:

大前提:

小前提:

结 论:

试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.

※ 典型例题

例1 命题:等腰三角形的两底角相等

已知:

求证:

证明:

把上面推理写成三段论形式:

变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD

例2求证:当a>1时,有

动手试试:1证明函数 的值恒为正数。

2 下面的推理形式正确吗?推理的结论正确吗?为什么?

所有边长相等的凸多边形是正多边形,(大前提)

菱形是所有边长都相等的凸多边形, (小前提)

菱形是正多边形. (结 论)

小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

三、总结提升

※ 学习小结

1. 合情推理 ;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

结论显然是错误的,是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

4.归纳推理是由 到 的推理;

类比推理是由 到 的推理;

演绎推理是由 到 的推理.

后作业

1. 运用完全归纳推理证明:函数 的值恒为正数。

直观图

总 课 题空间几何体总课时第4课时

分 课 题直观图画法分课时第4课时

目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

重点难点用斜二侧画法画图.

引入新课

1.平行投影、中心投影、斜投影、正投影的有关概念.

2.空间图形的直观图的画法——斜二侧画法:

规则:(1)____________________________________________________________.

(2)____________________________________________________________.

(3)____________________________________________________________.

(4)____________________________________________________________.

例题剖析

例1 画水平放置的正三角形的直观图.

例2 画棱长为 的正方体的直观图.

巩固练习

1.在下列图形中,采用中心投影(透视)画法的是__________.

2.用斜二测画法画出下列水平放置的图形的直观图.

3.根据下面的三视图,画出相应的空间图形的直观图.

课堂小结

通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

比应用教学设计 篇4

教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。

教学目的:

1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。

2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。

教学重点:进一步掌握分数应用题的结构特征和解题规律。

教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。

教具准备:投影仪

教学过程:

一、梳理知识,使知识建成网状结构

1、口答:(打开投影仪)

(1)分数应用题的基本类型有几种?哪三种?

(2)解答这三种分数应用题的关键是什么?

(找准单位"1",弄清单位"1"的量、分率及分率对应量。)

(3)解答这三类分数应用题的基本关系式是什么?

2、(l)简单的分数应用题

①某班有男生40人,女生人数是男生1/4,女生有多少人?

②某班有女生10人,男生40人,女生人数是男生人数的几分之几?

③某班有女生10人,是男生人数的士,男生有多少人?

(2)稍复杂的分数应用题

①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?

②某班有男生40人,女生30人,男生人数比女生人数多几分之几?

③某班有女生30人,比男生人数少言,男生有多少人?

以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:

①求一个数的几分之几是多少?

单位"1"的量×分率=分率对应量

②求一个数是另一个数的几分之几是多少?

分率对应量÷单位"1"的量=分率

③已知一个数的几分之几是多少,求这个数?

分率对应量÷分率=单位"1"的量

而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。

[评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的思维条理化,进一步理清了学生的解题思路。]

二、抓住结构特征,应用所学知识,提高能力。

(1)某用户三月份用电100度,四月份比三月份节约用电1/10,?

①100×1/10?

②100×(1—1/10)?

③100×(1—1/10+1)?

(2)某用户四月份比三月份节约用电100度,正好节约了1/10,

①100÷1/10?

②100÷1/10×(1—1/10)?

③100÷1/10×2—100?

(3)某用户四月份用电90度,比三月份节约用电1/10,?

①90÷(1—1/10)?

②90÷(1—1/10)×1/10______________?

③90÷(1—1/10)+90________________?

(学生口述,集体订正,比较异同)

2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)

__________运来的桔子比苹果少,___________?

(1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?

(2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?

(3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?

(4)某商店运来苹果10吨,运来的'桔子比苹果少,运来的苹果比桔子多多少吨?

(5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?

(6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?

(7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?

(8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?

(9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

(10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?

(11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?

(12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?

(13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?

(14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

(15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?

(16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

(17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?

(18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?

(19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

(20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?

以上各题采用先让学生试做,然后老师归纳总结解题思路:

①先找出单位"1"的量

②谁和单位"1"的量相比

③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)

④确定算法(或列式)的依据是什么?

3、发展题(用幻灯逐题打出)

(1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?

(2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?

教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。

通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。

三、课堂小结,再次构成学生的认知结构。

师问:这节课你有哪些收获?

甲生答:这节课我们复习了分数应用题的基本类型。

乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。

丙生答:根据分数应用题的基本关系式确定算法。

丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。

比应用教学设计 篇5

课题:比的应用

教学内容:义务教育课程标准小学数学六年级上册第三单元《比的应用》

教学目标:1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独

立思考、自觉检验的好习惯,增强学生学好数学的信心。

教学重点:掌握按比分配应用题的结构特点和解题思路。

教学难点:正确分析,灵活解决按比分配的实际问题。

教学准备:教学课件卡片

教学过程:

一、复习导入

1、复习求一个数的几分之几是多少的实际问题。

2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

二、讲授新课

1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。

2、利用课件出示例2。

(1)学生读题,弄清题意。

(2)引导学生找出题中所提供的数学信息。

(3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。

(4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。

(5)小组讨论解题方法,然后进行汇报,并集体订正。

(6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

(7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

3、 小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

三、巩固练习

1、解决课前分卡片时所产生的问题。

2、课件出示练习题1,在学生理解题意的`基础上,引导学生比较练习题与例题

的异同,并用自己喜欢的方法解决,后集体订正。

3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,

鼓励学生用不同的方法独立解决,并引导学生自行检验。

四、拓展延伸

利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

五、课堂总结

学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

比应用教学设计 篇6

教学目标

1.复习成正比例和反比例关系的量的意义。

2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。

3.进一步培养同学们分析、推理和判断等思维能力。

教学重点和难点

1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

什么比例?

1.工作效率一定,工作时间和工作总量。( )

2.每块砖的面积一定,砖的块数和铺地面积。( )

3.挖一条水渠,参加的人数和所需要的时间。( )

4.从甲地到乙地所需的时间和所行走的速度。( )

5.时间一定,速度和距离。( )

2.选择题:

1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例

2.步测一段距离,每步的平均长度和步数( )。

① 成正比例② 成反比例③ 不成比例

3.比的后项一定,比的前项和比值()。

① 成正比例② 成反比例③ 不成比例

4.C= πd 中,如果c一定,π和 d( )。

①成正比例 ② 成反比例③ 不成比例

5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

?40:15= 60: ② 40=15×60 ③ 60=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量?

B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

2、总结 正 、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、 巩固练习

1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订本。

(30+10)=500×30

4 0=15000

=15000

=375

答:可装订375本。

2、比一比,想一想,每一组题中有什么不同, 你会列式吗?

(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸

用正反两种比例解答:

1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的'量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定) X×Y=K(一定)

X和Y成正比例关系。 X和Y成反比例关系。

正y 、反比例解比例应用题要抓的四个环节

第一、分析:可分四步。

第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质)

第二、设未知数为X,注意写明计量单位。

第三、根据正反比例的意义列出方程。

第四、检验并答题。