返回首页
智远网 > 短文 > 教案 > 正文

《圆柱的体积》教学设计

2026/02/18教案

此篇文章《圆柱的体积》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《圆柱的体积》教学设计 篇1

教学内容:

青教版九年义务教育六年制小学数学六年级下册第23—28页。

教材简析:

该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

教学目标:

1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

2、经历探索圆柱计算公式的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点和难点:

圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

教具准备:

多媒体课件、圆柱体积学具、沙子等。

第一课时

教学过程:

一、创设情境,激趣引入。

谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

课件出示:两个圆柱体冰淇淋。

谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

设计意图:

从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

二、回忆旧知,实现迁移。

谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

设计意图:

通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

三、利用素材,探索新知。

㈠交流猜测

谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

生:我们学过长方体的.体积,可不可以将圆柱转化成长方体呢?

师谈话:你的想法很好,怎样转化呢?

生讨论,交流。

生汇报,可能会有以下几种想法:

1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

㈡实验验证

学生动手进行实验。

谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

学生合作操作,集体研究、讨论、记录。

设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

四、分析关系,总结公式

1、全班交流

谈话:哪个小组愿意展示一下你们小组的研究结果?

引导学生发现:

转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

2、分析关系

引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

3、总结公式。

谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

谈话:你发现了什么?

引导观察:分的份数越多,拼成的图形就越接近长方体。

(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)

谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

根据学生的回答教师板书:

长方体的体积 = 底面积 × 高

圆柱的体积 = 底面积 × 高

谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh

设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

五、利用公式,解决问题。

自主练习第1题、第2题、第3题

设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

六、课堂总结

《圆柱的体积》教学设计 篇2

《圆柱的体积》教学设计【优选】

作为一位无私奉献的人民教师,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么应当如何写教学设计呢?以下是小编为大家整理的《圆柱的体积》教学设计,希望能够帮助到大家。

《圆柱的体积》教学设计 篇3

一、创设情景、感知圆柱体积的概念。

教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。

师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?

生:水面上升一些。圆柱形的物体挤掉了原来水占有的空间。

师:我们通常把这个空间叫体积。

生:我发现上升的水的体积和圆柱的体积是相等的。

师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。

生:圆柱所占空间的大小就叫圆柱的体积。

二、比较大小、创设求圆柱体积的情景。

教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)

师:这两个圆柱的体积,哪个比较大一些?

生:第一个比较大,因为它高一些。

生:第二个比较大,因为它粗一些。

生:他们都是猜的。第一个圆柱它虽然高一些,但底面积小一些;第二个圆柱虽然底面大一些,它是的高少了一些。无法准确地比较它们的大小。

师:有什么办法能比较它们的大小呢?(小组讨论)

生:准备半杯水,将第一具圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。

生:要学会计算圆柱的体积后就好解决了。

三、大胆猜想,感知圆柱体积公式。

师:你觉得圆柱体积的大小和什么有关?

生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。

生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。

师:很好!大胆地推想一下圆柱的体积应如何计算?(小组讨论)

生:我猜想用圆柱的底面积乘以它的高就可以求出体积。

师:你同意他的猜想吗?说说你的理由。

三、小心求证,论证圆柱体积公式。

师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。

教师拿出一具圆柱体体积教具,把它藏在衣服里,只露出一具底面。

师:你看到了什么?

生:圆形。

师:你还记得圆面积转化什么图形的面积来求它的公式的吗?

生:把圆的面积转化成长方形的面积。

教师把整个圆柱拿出来,问:怎么求这个圆柱的体积呢?(小组讨论)

生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。

师:说说你们小组是如何转化的。

生上台操作展示。生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。

师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。

最后学生自主得出圆柱的体积公式。

【片段分析】

本节课的设计过程是:"创设情景----发现问题----提出问题----猜想假设----实践操作----解决问题",这一教学过程,充分体现了以学生为主体的教学思想,教师充分地相信尊重学生,鼓励其积极主动地探究问题,让学生体验解决问题的过程,体验解决问题的成功。

1、注重了课程资源的开发。由于学生生活背景和思考角度的不同,所使用的方法必然是多样化的,教师应尊重每位学生个性化的想法,并认真倾听。本节课中多处合理地开发了学生的课程资源:一是在感知体积的概念时,教师通过做圆柱放入水的实验,实实在在地让学生用生活经验感知体积的存在;二是在猜想体积公式时,学生一般的经验是如果一个圆柱高(底面)不变,底面(高)越大体积越大,学生自然地就会利用自己的经验想到圆柱的体积的大小与底面和高有密切的联系;三是在体积公式猜想时。猜想方法的多样化就体现了问题解决策略的多样化。有的学生联系实践生活联想,把圆柱看作是有很多个相等的圆叠加起来的;有的学生联系旧知识来推想,因为长文体和正方体的体积公式都是底面积乘高。学生是学生真正的主人,只有调动学生的学习积极性和平时的各种知识积累,这种知识的积累可以是以前学过的知识和方法,也可以生活中的`经验或经历,这些都是课程资源,教师只有充分利用了这些课程资源,学生的学习活动才有可能真正成为有意义的过程。

2、注重数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。本节课沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。本课中学生“以旧推新”-大胆地进行数学的猜想;“以新转旧”-积极把新知识转化为已能解决的旧问题;“新旧交融”-合理地把新知识纳入到原有的认识结构中,教学活动成了学生自己建构数学知识的活动。

整个教学过程是在“猜想-验证”的过程中进行的,是让学生在和已有知识经验中体验和理解数学,学生学会了思考、学会了解决问题的策略,学出自信。

《圆柱的体积》教学设计 篇4

教学目标:

1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;

2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。

3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。

教学重点:

掌握和运用圆柱体积计算公式进行正确计算。

教学难点:

理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学准备:

1、用于演示把圆柱体积转化成长方体体积的教具。

2、多媒体课件。

教学过程:

一、复习导入、揭示课题

谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)

1、呈现长方体、正方体和圆柱的直观图。

2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)

3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。

二、自主探究,精讲点拨

1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?

2、学生小组讨论、交流。

教师:同学们自己先在小组里讨论一下

(1)你准备把圆柱体转化成什么立体图形?

(2)你是怎样转化成这个立体图形的?

(3)转化以后的立体图形和圆柱体之间有什么关系?

3、推导圆柱体积公式。

学生交流,教师动画演示。

(1)把圆柱体转化成长方体。

(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)

(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。

(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)

(5)推导圆柱体积公式。

讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)

教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:

圆柱的体积 = 底面积×高

V = S h

三、运用公示,解决问题

教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?

①知道圆柱的底面积和高,可以求圆柱的体积。

练习七的第1题:填表。

②知道圆柱的底面半径和高,可以求圆柱的体积。

试一试。

③知道圆柱的底面积直径和高,可以求圆柱的体积。

练一练的第1题:计算下面各圆柱的体积。

④知道圆柱的底面周长和高,可以求圆柱的体积。

一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?

四、迁移应用,质疑反馈。

1、判断正误,对的画“√”,错误的.画“×”。

2、计算下面各圆柱的体积。

3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。

五、全课小结。

这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。

六、作业布置:

完成作业纸上的习题

教学反思

本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。

而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

不足之处是:

1、

2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。

《圆柱的体积》教学设计 篇5

教学内容:

苏教版义务教科书《数学》六年级下册第15~16页例4、“试一试和“练一练”,第17页练习三第1~2题。

教学目标:

1、使学生结合具体情境,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。

2、使学生在观察、猜想、验证、归纳等数学活动过程中,进一步感受转化思想,积累数学活动的经验,培养应用已有知识探究和解决新问题的能力;培养观察、比较和分析、概括等思维能力,进一步发展空间观念。

3、使学生主动参与学习活动,培养乐于思考、善于思考的品质;进一步体会探索和获得新知的成功过程,提高学习数学的兴趣和学好数学的自信心。

教学重点:

探索并掌握圆柱的体积公式。

教学难点:

理解圆柱体积计算公式的推导过程。

教学准备:

圆柱体转化成长方体的学具。

教学构想:

这部分内容是在学生学算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例4先比较等底等高的长方体、正方体和圆柱体之间的体积关系,建立圆柱体积公式的猜想;然后把探索圆面积公式的方法迁移过来,通过操作验证圆柱公式的猜想。“试一试’和”练一练”都是让学生应用刚刚学习的体积公式计算圆柱的体(容)积,解决简单的实际问题,巩固加深对公式的理解。

教学过程:

一、复习导入

呈现长方体、正方体和圆柱的直观图。

提问:认识这些几何体吗?说说各是什么形状。

你能求出哪个几何体的体积?

集体交流,教师板书:

长方体体积=长×宽×高;

正方体体积=棱长×棱长×棱长;

长方体(正方体)体积一底面积×高。

引导:圆柱的体积怎样计算呢?它和我们以前学习的知识有没有联系呢?今天我们就一起来探索圆柱体积的计算方法。(板书:圆柱的体积)

二、教学例4

1、观察比较,建立猜想。

(1)出示例4,指名读题,明确底面积和高都分别相等。

提问:长方体和正方体的体积相等吗?为什么?

集体交流得出:长方体和正方体的底面积相等,高也相等;长方体和正方体的体积都等于底面积乘高,所以它们的体积相等。

(2)提问:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?把你的想法在小组里交流。

集体交流,引导学生猜想圆柱的体积与长方体、正方体的体积可能相等,也就是可能等于底面积乘高。

(1)引导:同学们认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?在小组里讨论。

小组讨论,教师适时提醒:圆可以转化成近似的长方形计算面积,圆柱是否也可以转化成近似的长方体计算体积呢?

引导得出:圆可以转化成近似的长方形,按同样的方法把底面圆平均分,把圆柱切开,可以拼成近似的长方体。

(2)提问:你能按这样的想法把圆柱转化成长方体吗?各小组拿出课前准备好的圆柱学具,试着把它拼一拼

小组合作,动手操作。

集体交流,部分小组派代表说一说拼的方法。

得出:把圆柱的底面平均分成16份,切开后拼成了一个近似的`长方体。

(3)启发:如果把圆柱的底面平均分的份数再多一些,比如平均分成32份、64份……切开后拼成的物体会有什么变化呢?同学们可以先在头脑里想象一下。

让学生说说把圆柱底面平均分成32份、64份……切开后拼成的物体会有什么变化。

课件演示把圆柱的底面平均分成32份、64份……切开依次拼一拼提问:和你想象的一样吗?拼成的物体有什么变化?这说明什么?

小结:把圆柱的底面平均分的份数越多,切开后拼成的物体就越接近长方体。这样无限地分下去,就能拼成长方体。

3、观察比较,推导公式。

提问:拼成的长方体与原来的圆柱有什么关系?

学生交流后,借助示意图小结:拼成的长方体的体积与圆柱的体积相等;拼成的长方体的底面积等于圆柱的底面积,高等于圆柱的高。

追问:想一想,可以怎样求圆柱的体积?

根据学生的回答,小结并板书圆柱的体积公式:

圆柱的体积=底面积×高

谈话:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,(出示直观图,并用字母表示底面积和高)你能用字母表示圆柱的体积公式吗?

指名口答,教师板书:V=Sh。

4、回顾过程,反思交流。

提问:回顾圆柱体积公式的探索过程,你知道了什么,有什么体会?把你的想法在小组里交流。

小组交流后全班反馈。

小结:推导圆柱体积公式的过程让我们知道,可以利用长方体体积公式推导出圆柱体积公式。推导时可以联系圆转化成长方形的方法,把圆柱切开拼一拼,转化成长方体,发现拼成的长方体和圆柱体积相等,得出圆柱体积的计算方法和长方体、正方体一样,也用底面积乘高。

5、完成“试一试”。

指名读题,理解题意。

学生独立完成,指名板演。

集体订正。

提问:计算这个零件的体积应该先算什么,再怎么算?

说明:根据圆柱体积的计算方法,求体积要用底面积乘高。当底面积未知时,可以先求底面积,再计算体积。

三、巩固应用

1、完成练习三第1题。

出示表格,学生独立填写。

指名口答,集体订正。

提问:这里是怎样计算圆柱体积的?

2、完成“练一练”第1、2题。

学生独立完成,指名板演。

集体交流,让学生说出每题的思考过程。

提问:比较这两题的解答过程,有什么相同点与不同点?

得出:两题都是求圆柱的体积,都是先求底面积,再用底面积乘高求出体积。但这两题已知条件不同,第1题两小题是已知圆柱的底面直径或半径和高,第2题是已知圆柱的底面周长和高,计算时注意根据不同的条件,用相应的方法先求出圆柱的底面积,再计算圆柱的体积。

四、课堂总结

提问:这节课我们学习了什么内容?圆柱的体积公式是怎样推导出来的?你还有哪些体会?

《圆柱的体积》教学设计 篇6

一、教学内容

教材第25页 例5、例6

二、学习目标

1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

三、教学重难点

1、重点:理解、掌握圆柱的体积公式的推导过程。

2、难点:圆柱体积公式的推导过程。

四、教学准备

多媒体课件

五、教学过程

创设情境、生成问题

师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

板书:圆柱的体积(课件)

探索交流、解决问题

1、猜想

师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

(生自由猜想,并讨论交流)师适当板书记录

刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

师:第一组图片中的两个圆柱有什么特征?

生:底面一样,但是高度却不一样,体积也不一样

师:第二组图片中的两个圆柱有什么特征?

生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

师:那么通过刚才两个同学的回答,你能得出什么结论呢?

小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

生猜想......

师:我们的猜想对不对,还是要用实验去证明

2、推导圆柱体积计算公式

师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

师:用心思考的同学总能找到解决问题的`办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

(课件出示作业纸)对应和公式推导

选取小组的作业纸进行展示,有其他同学进行评定

课件演示结果

小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

巩固应用、内化提高

2、

3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

8cm

8cm

498ml

498ml

10cm

10cm

回顾整理、反思提升

今天这节课你有什么新的收获说出来和大家一起分享吧!