返回首页
智远网 > 短文 > 教案 > 正文

可能性教学设计

2026/02/20教案

此篇文章可能性教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

可能性教学设计 篇1

教学内容

人教版义务教育教科书小学数学五年级上册第四单元《可能性》。

教学目标

1.使学生初步体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定”“可能”“不可能”等词语来描述随机事件发生的可能性。

2.在活动过程中,使学生能够列出简单试验中所有可能发生的结果。

3.让学生经历“猜想—实践—验证”的过程,培养学生的猜想意识、表达能力以及初步的判断和推理能力,让学生在同伴的合作和交流中获得良好的情感体验。

4.使学生感受到生活与数学的联系,培养学生学习数学的兴趣。

教学重难点

教学重点

通过活动让学生充分体验随机事件发生的确定性和不确定性。

教学准备

课件、盒子、节目签、乒乓球等。

教学过程

一、激趣导入,探究新知

通过趣味游戏,初步感知“可能性”。教师:老师知道,xxx班的孩子们最善于参与各项有意义的活动,这节课我们就从一场精彩的联欢会开始吧!聪明的同学们在联欢会中设置了一个激动人心的环节,那就是通过抽签决定要表演的节目类型。同学们想体验吗?

学生:想!

教师:先来认识我们的节目签吧!(课件出示节目签)

学生:有唱歌、跳舞、朗诵。

教师(课件显示节目签翻转至背面,并打乱位置):请一位同学来抽签。

教师:请第一位同学来抽签,他会抽到什么节目呢?请大家先猜一猜。学生会对抽签结果进行猜测:可能是唱歌,可能是跳舞,也可能是朗诵,3种情况都有可能。教师在黑板上板书:可能。

教师(课件翻出中间一张:跳舞或其他签):第一位同学抽到的是什么节目?

学生:跳舞。

教师:为了节目不重复,被抽去的跳舞签就不放回去,还剩下两张签。接下来该第二位抽签了,她可能会抽到什么呢?

学生:唱歌和朗诵都有可能。

教师:确定吗?

学生:不确定。

教师:还可能抽到“跳舞”吗?

学生:不可能(板书:不可能)。

教师:理由是?

学生:因为两张签里没有跳舞。

教师:我请第二位同学抽取一张。(抽后汇报结果)(课件翻开第一张:朗诵)。

教师:请第三位同学抽签。现在只剩最后一张了,第三位同学会抽到什么呢?

学生:唱歌(一定是唱歌)。

教师:能确定吗?为什么?(教师板书:一定)

学生:确定,因为只有一张签,一定是唱歌。

教师(小结):同学们,我们用“可能”“不可能”“一定”来描述抽签的情况。生活中还有很多这样的现象,这也是我们这节课要研究的数学问题——可能性。(板书:可能性)(设计意图:“可能性”对于五年级的学生来说并不是完全空白的,学生在生活和学习中已经具有一些简单随机现象的知识基础和生活经验。这里用学生熟悉的“联欢会上抽签表演节目”的生活实例导入新课教学,让学生在猜测中感受,在活动中明晰,以形成对“可能性”的初步认识,同时也有效地激发了学生的学习欲望,吸引学生参与到数学学习中来。)

二、实践验证,领悟新知

1.摸球实验

教师:老师还为同学们带来了一个神奇的游戏盒子(出示盒子),从盒子里我们也能找到可能性的知识。

教师:(摇动盒子,盒子里是什么?学生回答!再从盒子里拿出一个红色乒乓球)这是老师为同学们特制的——红色乒乓球。如果老师将这个红色的乒乓球放进盒子,你想摸出红色的乒乓球吗?

学生:想!

教师:如果盒子里一共有六个大小形状完全相同的红色乒乓球,你从盒子里任意摸取一个,会有怎样的结果?

学生:一定会摸到红色乒乓球。

教师:理由呢?

学生:因为盒子里全是红色乒乓球,只能摸出红色乒乓球。

教师:如果游戏盒子变了(出示4红2黄),想从盒子里摸出一个红色的乒乓球,摸取一次会有怎样的结果?

学生:可能摸到,也可能摸不到。

教师:想试试吗?为什么?

学生:想,因为结果不确定。组织学生体验摸球过程,每摸出一个记录一个,并将球放回去,摇匀后再进行下一次摸球试验。(引导学生摸球时不偷看,说明将球放回去是为了确保条件不变,摇匀是为了公平)

教师:游戏盒子再变一变,变成了——3红3黄(课件出示),从盒子里任意摸取一个乒乓球,能摸到红色乒乓球吗?一定会摸到吗?

学生:可能摸到,但不一定。组织学生再次体验摸球过程,并记录,如果连续出现几次红色球或者黄色球,提问:下一个一定是红色球或黄色球吗?让学生感受随机事件的不确定性,每次发生的结果与上一次结果没有直接关系。

教师:变!——游戏盒子里面的乒乓球变成了这样,1红5黄(课件出示),从盒子里任意摸出一个球,还会摸出红色乒乓球吗?理由是?

学生:可能摸到!因为盒子里有红色乒乓球。组织学生再次体验摸球过程,并记录,让学生再次感受随机事件的不确定性,体会每次发生的结果与上一次结果没有直接关系。

教师:如果盒子里有10个黄球1个红球呢?还有可能摸到红球吗?学生:有可能。

教师:如果盒子里有100个黄球1个红球呢?还有可能摸到红球吗?如果盒子里有1000个黄球1个红球呢?10000个黄球1个红球呢?还有可能吗?

学生:有可能。

教师:如果去掉这个红球呢?还能摸到红球吗?

学生:不可能。(教师要充分给予学生猜测、试验、交流的机会。在交流时,教师还要引导学生在感受的基础上用可能、不可能、一定等词语描述摸球的各种情况。)(设计意图:本环节旨在通过简单实验的对比,让学生亲历猜想、实践、验证、交流,丰富学生对确定事件和不确定事件的体验,初步感受随机事件发生的统计规律性和可能性的大小。)

2.猜球实验。

教师:盒子又变了,变成了……是老师直接告诉你们结果呢?还是我提供一个线索你们自己想办法猜出盒子里的球是什么颜色的?

学生:提供线索,自己猜。

教师:(出示课件)线索是,可能与A盒子、B盒子或者C盒子中的'某一个完全相同,到底与哪个盒子相同呢?怎么办?

学生:从盒子中摸出一个球。

教师:试试看。(学生从盒子里摸出一个球,并出示所摸出的球)。知道是哪个盒子吗?学生:不能确定,可能是A盒子、或者C(B)盒子,但可以排除B(c)。

教师:不确定,怎么办?

学生:再摸一次。学生再次从盒子里摸球,并出示结果,判断盒子,如果还无法判断,就继续摸球,直到能够判断是A盒子为止。

3.放球实验。

教师:同学们还想继续玩吗?

学生:想。

教师:可是老师的游戏盒子变不了了,想请同学们帮忙制作游戏盒子,愿意吗?

学生:愿意!

教师:但制作游戏盒子需要遵守规则,请看!(出示课件)按规则作出第一个游戏盒子。(为了方便用此图代替盒子,用磁扣代替乒乓球)怎么放?请同学汇报放球方法。

学生:放4个红球。

教师:那第二个盒子该怎样完成呢?(出示课件)请同学们三人一个小组,用圆形纸片代替乒乓球,在桌子上摆一摆,小组内交流自己的想法,做好小组汇报的准备。请学生汇报。因为结果多样,老师在黑板上操作呈现,并订正。

教师:用一句话概括所有的做法,可以怎样说?

学生:只要盒子里不装黄色球就可以了。

教师:第三个盒子又来啦!又怎样做呢?小组先摆一摆,先在组内交流讨论,再小组汇报。学生汇报,并评价。

教师:用一句话概括可以怎样说?

学生:至少要放一个蓝色球但不能全是蓝色球。(放1-3个蓝色球,再放其它颜色的球,直到放够四个球。)(设计意图:本环节旨在通过动手操作,让学生通过学习的可能性知识去判断如何放球,感知结果与条件的关系。)

三、灵活运用,巩固新知

教师:我们学会了游戏盒子的制作,自己设计一个更加有趣的游戏盒子,课余时间和同学尽情的去研究吧!现在我们运用这节课学到的知识去解决问题吧!

1.练习十一第2。

教师:认真读题,独立思考,并分享你的结论。

学生:可能是1、2、3、4、5、6,这6个数都有可能。教师:朝上的面可能是7吗?0呢?因为?

学生:不可能,因为没有7,0这两个数。

教师:如果老师想让掷出的结果一定是6朝上,可以怎样设计呢?

学生:只要正方体的六个面都写数字6就可以了。

2.出示第二题,判断对错。

判断事件发生的可能性描述的是否准确,学生用手势汇报判断结果,集体订正。教师根据问题适当拓展。第四小题,引导学生明确硬币有正、反两面,抛出后可能是正面朝上,也可能是反面朝上,是不确定的。(设计意图:通过学生们相互交流、评析,感受数学就在自己身边,体会数学学习与现实的联系。让同学们判断,是让学生认识到客观事件发生的确定性和不确定性与个人愿望无关。)

四、交流归纳,全课小结

教师:有一位聪明的将军通过抛硬币让一场战争取得了不可思议的胜利,想听这个故事吗?

学生:想。出示故事,听故事。

教师:我们抛出的硬币结果是怎样的?

学生:可能正面、也可能反面朝上。

教师:而将军抛出的硬币结果是?

学生:一定是正面朝上。

教师:聪明的将军巧妙将可能变成了(一定),从而激发了士兵的信心,战胜了强大的敌人。所以信心对我们每个人都非常重要,在面对困难和挫折时,我们要充满信心,通过努力去克服困难、解决问题,就能成功!

教师:这节课同学们表现的都非常棒!请同学们对自己优秀的表现做做简单的评价吧!学生自我评价,教师给予肯定和鼓励。教师:在课堂活动中,我看到同学们个个信心满满,能积极的思考问题,大胆的汇报交流,让我们愉快的度过一节有趣的数学课,老师为优秀的你们点赞!也有一句话与你们分享(课件出示),请齐读(人人都有可能成功!)

可能性教学设计 篇2

教学内容:

人教版义务教育课程标准实验教材五(上)第99-100页。

教学目标:

1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。

2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。

3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。

4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。

教学重点:体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。

教学难点:用分数表示可能性的大小。对随机思想的理解。

学情分析:

学生在三年级上册已经初步体验有些事件发生是确定的,有些则是不确定的,并能用"一定""不可能""可能""经常""偶尔"等恰当的词语来描述事件发生的可能性的大小。学生对简单的分数已经有了初步的认识,并且系统的学习了有关小数的知识,知道小数与分数之间的关系。学生除了已经具备相应的知识基础以外,在生活中学生经常用石头剪刀布或掷色子等游戏规则来玩游戏,所以生活经验也是丰富的。本课就是在学生具备了以上知识基础和生活经验的基础上进行教学的,使学生对"可能性"的认识和理解逐步从定性向定量过度,不但能用词语表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

教学过程:

一、玩游戏引入。

游戏规则:双方轮流按顺序报数,每人每次最多只能报2个数,谁抢到6,谁就是赢家。通过游戏,学生发现秘密:谁先报数就一定会输。

师:用什么办法决定让谁先报数才算公平?

预设:石头剪刀布、丢硬币、转转盘、掷色子……

理念:游戏导入,激发兴趣,同时让学生带着如何让游戏更公平的任务研究数学问题,培养公正、公平的意识。用一个游戏贯穿整节课始终,让游戏和学习自然的结合在一起,更能让学生体验到学习数学的乐趣。

二、研究游戏学习新知。

(一)研究丢硬币体验等可能实事件

师:丢硬币公平吗?为什么?(正面朝上与反面朝上的可能性都是一样)

师:这节课我们来研究在不确定现象中可能性大小问题。(揭题)

师:可能性的大小,我们可以用数来表示。谁知道掷一枚硬币正面朝上的可能性是多少?(,%,0.5)

师:为什么可以用这些数表示?(都表示一半)

师:如果用表示,那么分母2表示什么?分子1又表示什么呢?

师:掷一枚硬币,正面朝上的可能性是,反面朝上的可能性是多少呢?()

师:现在你能进一步来分析丢硬币是公平的吗?

师:估计掷10次、30次、50次硬币,正面朝上可能会有几次?

师:你估计的理由是什么?(5÷10=0.5,15÷30=0.5,25÷50=0.5)

师:下面我们就来验证一下,结果会不会是这样。

操作要求:1、同桌合作,一人掷硬币20次,另一人记录正面朝上和反面朝上的次数。2、试验结束后,前后桌合作,统计共掷硬币40次正面朝上的次数。

3、小组长用计算器计算正面朝上的次数除以40的商

师:把我们的比较结果与0.5比较,你有什么发现?

出示一组数学家研究的数据

师:现在你又有什么发现?

师:实际操作的结果跟可能性大小往往会有差距,但是通过大量的实验后,实际操作的结果就会很接近,如果试验的次数再不断增加,就会越来越逼近。

师:数学家抛了八万多次,老师计算了一下,如果每5秒钟抛一次,也要五天五夜不吃不睡什么都不做的去抛,如果要过正常人的生活最少也要10天,想到这里时,老师就被数学家身上所散发出来的一种东西感动了,你知道是什么东西感动了我妈?

理念:由掷硬币引入,让学生知道可以用数来表示不确定事件发生的可能性大小。通过动手实验和数学家的实验数据,体验频率与概率的关系,让学生初步感知用数表示可能性大小的意义,并能对简单事件的可能性做出预测。

(二)探究游戏规则的公平性

①研究转转盘

师:刚才我们通过研究,用掷硬币的`方法决定谁先报数是公平的,下面我们就来玩一玩。在玩之前,老师想把同学们分为n组,再从其中的一组中选一名代表与老师比赛。(几组要看班级具体的人数而定,选代表时,可以课前把学生的名字写在纸条上,再用抽签的方法选出代表)

出示:(略)

师:用这个转盘公平吗,为什么?(事件发生的可能性大小不同,造成游戏的不公平)怎样比较公平?

出示:(略)

师:这样公平吗?那你觉得现在你们组被抽中的可能性是多少?分子分母各表示什么?(用转盘确定了一组)

②研究抽签

师:由于课堂时间有限,我觉得跟一大组人玩还比较浪费时间,想在这个大组里抽签抽选一个特邀代表跟老师玩,用抽签的方式公平吗?

师:现在在这一组中,每个同学被抽到的可能性是多少?如果还没有确定你们这一组呢?

师:这里的可能性为什么会发生变化?

(抽出一名学生上来玩一玩)

师:如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?

理念:通过比较引出不确定事件的可能性是有大小的,体验到游戏的公平性与不确定事件发生的可能性大小有着密切的联系。用转盘很直观,更能激发学生对分数原有的认知。通过对某一同学被选到的可能性进行计算,让学生体验到某一事件的概率大小与总可能数有关,培养概率素养。进一步学习用分数表示可能性的大小。"如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?"这里主要渗透了独立事件互不干涉的概率思想。

③研究扑克牌

出示a、2、3、4、5、6,6张扑克牌,其中有3张红桃,3张梅花。

师:老师规定抽到a我先报数,抽到其余5张你们先报数,可以吗?

师:你能设计一个公平的游戏规则来确定谁先报数吗?

师:这些不同的游戏规则有没有共同的地方?()说一说这里的6表示什么?3又表示什么?

师:设计一个规则,让老师报数的可能性是你们的两倍,能设计吗?

4、小结:同学们,刚才我们通过玩抢6游戏,发现游戏的不公平,我们就研究并创造了一些公平的游戏规则,在这个过程中你学到了什么?

理念:会根据要求设计公平的游戏规则,并能从数学的角度进行分析,进一步培养概率素养和用数学解决问题的能力。设计2倍的可能性,发展学生的思维能力。

三、应用

师:研究可能性充满趣味,而且可能性在我们生活中运用也是非常广泛。

1、阅读下面几句话,你有什么话要说?

a、福利彩票的中奖率是1/10000000

b、明天下雨的可能性是9/10

c、我想知道这些种子的成活的可能性是多少,我可以怎么做呢?

2、我们学校门口有个小贩子进行一个摸球抽奖游戏:他的规则是在10个球中抽

中红球的奖给你10元钱,抽中白球的则你给他3元钱。你怎么看待这个事情?

(1个红球,9个白球)若是摸10次,计算一下谁赚了?

3、师:可能性在我们数学上有一个专门的名字--概率。概率不仅在生活中应用广泛,而且在数学里它也是一门非常重要的学科,它是怎么发展的呢?让我们来看一个资料。阅读概率的发展史(播发音乐)

理念:让学生感受到概率在生活中的广泛应用,会数学的眼光看待并分析生活中的现象。渗透数学文化教育,让数学课更有内涵。

板书设计:可能性的大小

掷硬币转转盘抽签抽扑克牌

正面:1/21/31/163/6

反面:1/21/48

可能性教学设计 篇3

教学内容:

人教版课程标准实验教科书《数学》五年级上册p99-100,可能性。教学目标:

1、初步体验事件发生的等可能性以及游戏规则的公平性,会用

分数表示事件发生的可能性;

2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖

析与解释,使学生初步体会数学与生活的紧密联系。

教学重点:

体验事件发生的可能性以及游戏规则的公平性,会用分数表示

事件发生的可能性。

教学难点:

能按要求设计公平的游戏方案。

学具准备:

扑克牌若干张;课件

教学过程:

一、感知:

1、师:(点击主题图)请看,它们正准备做什么呀?(在踢足球)踢足球是一项很好的体育运动。那么,你知道足球场上裁判是怎样决定哪个队先开球的吗?

(生:抛硬币)

师:这种方式公平吗?为什么?

(生:公平。因为一枚硬币只有正面和反面,每一个足球队都有50%的先发球的机会;……)

师:为什么会是50%?生说出现几种情况?两个队猜的是其中的几种情况?除了用百分数表示外,还能用简洁的分数表示吗?(板书分数)你会想到哪个分数?(生说1/2)(教师同时板书:1/2)为什么是1/2?这个2表示什么?1呢?

2、引出课题:用分数表示可能性的大小

师:谁都不吃亏。这节课我们就要来研究(指)读“用分数表示可能性的大小”。

师:看到这个课题你想到了什么问题?

3、提出问题:

生1:都有什么分数呢?

生2:可能性有多大?……(根据学生说的重点圈出字眼)

【评析:联系学生的生活实际,由“足球比赛”引导学生探索事件发生的可能性,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验。】

二、认识:

(一)活动一:

师:大家想一想,如果我抛掷10次,正面大约可能出现多少次? 为什么?

师:同意他的说法吗?抛掷20次呢?

师:那么正面朝上的可能性和反面朝上的可能性都是1/2,是公平的。那么大家想一想如果我们实际操作的时候又是怎么样的呢?想不想试一试?下面我们来做一个实验。请看实验步骤:

1.每组抛20次,并把结果记录下来;

2.选择合适的统计方法正面朝上的次数

3.试验完成后思考:正面朝上的次数与总次数有什么关系。

1、两张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?

师:看来可能性的学问还真不少,我们就来研究它吧。将在游戏中学习好不?(好)好好好,请看游戏规则(课件出示)那你们得耐心等一等,我先玩,再到你们玩,比比看,谁找到的知识多。我手上有两张牌一张红桃a,一张红桃2。把牌反扣在桌面上,从中任摸一张,摸到红桃a的可能性是几分之几?

生:1/2。(齐说)

师:声音这么宏亮,怎么想的.?

生:……

2、三张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/3)

师:为什么会出现不同的分数?

3、四张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/4)

4、要使摸到红桃a的可能性为1/6,那怎么办?

(二)活动二:

1、问:现在轮到你们了,要按游戏规则来。看看你们找到的相关可能性的分数多还是教师多,开始吧。

2、生汇报:

师:哪个组派代表先来说?

组1:(几分之一)我们的牌是红桃a、2、3,黑桃a,2,3。把牌反扣在桌面上,……

组2:(几分之一)我们找到了……

组3:(几分之几)我们找到了……

组4:(几分之几)先说分数,再说是什么牌。……

组5:还用不同的分数表示几一个可能性的问题。……

3、师小结:从活动中看到大家能互相帮助,互相关心,互相提醒,做到我会你也会,我明白的你也要明白,真是不易。

三、实践:

1、圆饼图。(自做)

2、有两家超市促销,在购物满100元后都可以从袋里摸奖,摸到红球赠20元。你会选哪家超市?为什么?

安盛超市:袋里装9个球(其中有3个红球)

永信超市:袋里装4个球(其中有2个红球)

3、选一选。

4、3个正方体。

四、归纳

1、师:这节课你学会了什么?

2、师:是啊,你们的表现让听课老师和我都认为你们特智慧、特勤奋、特精彩。我相信智慧和勤奋会让你们攻克一个又一个的数学问题,成就你们一次又一次的精彩。祝愿孩子们课课有精彩,一生精彩!下课。

可能性教学设计 篇4

教学目标:

1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。

2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。

3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的

可能性大小。

4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中

的应用。

教学重难点:

重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可

能性大小。

教法与学法:

教法:引导演示法。

学法:合作交流,实验验证法。

教学准备:课件、扑克牌等。

教学过程:

一、复习铺垫,迁移导入

课件出示图片:

师:同学们,这里有三个装有小球的.盒子(课件出示),如果老师想要一次就能摸出一个白球,你们建议我从哪个盒子里摸呢?

生:从A盒摸。

师:为什么不建议我从B盒或者C盒摸呢?

生:B盒与C盒可能摸出白球,但都不一定一次就能摸出白球。

师:既然B盒和C盒都可能摸出白球,那这两个盒子中哪个摸到的白球可能性较大?为什么?

(生独立思考,小组交流)(生可能回答B盒白球更多一些)

师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。

二、探索新知

1、体验可能性是有大小的。

(1)课件出示教材第45页情境图

师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。

问:从中摸出一个棋子,可能是什么颜色?

生:可能是红色,也可能是蓝色。

师:摸出一个棋子,那摸出哪种颜色的可能性大呢?

学生思考,猜测

师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!

(2)安排实验过程

请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。

要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。

讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。

(3)交流记录结果

师:通过实验结果,你们现在有什么想法?

学生交流、讨论

(4)小结:取出红棋子的次数要多些 ,也就是取出红棋子的可能性要大一些。

(5)讨论:再取一次 取出哪种颜色的可能性最大?

2、进一步证实、总结规律。

(1)提出猜想

在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)

(2)实验证明

这仅仅只是同学们的猜想,还需要大家用实验来证明它。

实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。

(3)汇报实验结果

(4)引导小结:从这些实验结果中,你发现了什么规律?

(学生独立思考,小组交流)

教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。

3、知识总结师设疑:可能性大小与什么因素有关?

(生思考回答)

师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。

三、巩固练习 (课件出示)

四、课堂小结 学完这节课后,你们能否准确判断可能性的大小?

板书设计:

可能性(2)

可能性的大小与在总数中所占数量有关

多 大

数量 可能性

少 小

可能性教学设计 篇5

教学目标:

1.通过试验操作活动,进一步认识客观事件发生的可能性大小。

2.能用分数表示可能性的大小。

教学重点:学会用分数表示可能性的大小,体会到数据表示的简洁性与客观性。

教学难点:学会用分数表示可能性的大小。

教学关键:充分利用教材提供的情境,让学生在喜闻乐见的活动中探索新知。

教具准备:多媒体课件。

教学过程:

一、故事引入。

师:今天老师给大家准备了一个故事,请大家静静的来听。

很久,很久以前,有一个古老的王国,在这个王国里有这样一个规定,凡是被关进监牢的人都要用抽签,由上天来决定他的生死。怎么抽呢?在一个盒子里放入两张纸条,一个写着死,另一个写着活,抽到死就砍头,抽到活就释放。有一次一个大臣受人陷害,被关进了大牢。第二天就要进行抽签了,你们说说他的命运会如何呢?

(出示故事录音)

师:听了这个故事,你想到了什么?

生:这个大臣可能会死,也可能没有死。

师:你觉得这位大臣死的可能性有多大呢?

生:这位大臣死的可能性是1/2

师:也就是说,可能性的大小可以用一个数来表示今天这节课我们继续用摸球的游戏来研究可能性的大小可以究竟用哪些数来表示。(板书:摸球游戏)

[设计意图:采用“生死签”的故事情境导入,在学生回答“这位大臣明天的命运如何时”;学生有可能回答“大臣有可能死,也可能是生”,“大臣生或死的可能性为一半”;“这位大臣生的可能性是1/2,死的可能性也是1/2”等等。这时,老师引导学生讨论这几种说法的简洁性,得出可能性的大小最好用一个数来表示,从而揭示课题。]

二、共同探究新知。

(出示5个盒子,分别是2个黄球,2个白球,1个白球、1个红球,1个白球、7个红球,7个白球、1个红球)

1、活动一:用数字表示摸出黄球的可能性是“1/2”。

师:如果我把刚才这位大臣活的签用黄球来代替,用白球代替死的签,那么你会选择哪个盒子代表大臣的抽签命运呢?

生:取第三个盒子就行了。(1个白球、1个黄球)

师:同意吗?

师:从盒子里任意摸出一个黄球,摸出黄球的可能是多少?

生:从盒子里摸出一个黄球,黄球的可能性是1/2。

师:你是怎样理解的?

[教师使用喜闻乐见的素材,学生思考起来会感到非常有趣,也易于理解和掌握,从中获得积极的情感体验,同时也能进一步加深对以前所学习知识的理解和巩固,激发学生参与学习活动的兴趣,又激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。]

1、活动二:用数字表示摸出黄球的可能性分别是“1、0、1/8、7/8”。

师:刚才我们拿了第3个盒子,从盒子里摸出黄球的可能性是1/2,那么还有4个盒子,如果从这些盒子中任意摸出一个黄球,你说,摸出黄球的可能性是多大呢?可以用什么数来表示?

(①信封,小组讨论和交流,汇报讨论结果)

师:分别说说你是怎样理解的?

师:刚才我们了解了从盒里摸出黄球的可能性,除了从盒子知道摸出黄球的可能性是多少,还可以知道谁的可能性呢?

生:还可能知道从盒子里摸出白球的可能性是多少?

师:那么从盒子里摸出白球的可能性是多少?

师:从表格中,你发现了什么?

生:两种可能性和起来为1。

师:只要知道其中一个球的可能性,另一种球的可能性就可以求出来了。

[设计意图:这个环节是整节课的重点和难点的突破口,是在学生对可能性的认识和分数的意义的理解和已有生活经验的前提下分析,为了让学生体验客观事件发生存在着可能性的大小,我充分给予学生讨论学习的空间,给他们营造一个宽松、民主的学习氛围,来体验“猜测与验证”的过程,感受到事件发生结果的确定性,“一定能”出现的现象用“可能性是1”的数据来表示;“不可能”出现的现象用“可能性是0”的数据来表示,可能会出现的现象用分数来表示。]

1、活动三:自由想像放球的个数,探讨从盒子里任意摸出黄球的可能性是几之几?

师:从盒子里任意摸出一个黄球的可能性除了用“1/2、7/8、1/8”的分数来表示可能性的大小外,你还可以怎么样放球,表示从盒子里任意摸出一个黄球的可能性是几分之几?

(②信封,小组讨论和交流,汇报讨论结果)

[设计意图:这个环节的设计充分体现了学生思维发展的自由空间,他们想怎么放就怎么放,一边放,一边说出摸出黄球的可能性,既对新知识的加以巩固,更重要的是培养了学生的创新思维,体现出学生的主体地位。]

小结:

师:通过刚才的活动和探讨中,我们了解到可能性的大小可以用什么数来表示?

生:分数。

师:还有吗?

师:表示一定能发生的事情用“可能性是1”来表示,不可能发生的事情用“可能性是0”来表示。

三、巩固练习。

1、回到引题故事,问大臣的命运会如何?

师:到了第二天,大臣的命运会如何呢?请听。

(故事录音)

就在这个时候,他的一个朋友告诉他,说有人趁法官司不注意的时候偷偷地把其中“生”的字条改成了“死”,你们猜一猜他明天的命运会如何呢?

师;现在大臣生的可能性又是多少?

生:大臣生的可能性是0。

师:生的可能性是0,那么死的可能性是多大呢?

生:大臣死的可能性是1。

师:你是怎样想的?

师:我们继续来听一听,大臣是否真的死了?

(故事录音)

他经过了一个晚上的冥思苦想,终于想出了一个好办法。到了第二天,他来到抽签现场,他明知道是两张都是死,他从中抽一张,然后在嘴中念念有词说:“小纸条呀,小纸条,我的命运都记托在你身上了!让我们同生共死吧!”说完,就把纸条吃到了肚子里面了。这时候大法官可着急了,说:“那可怎么办呀?”其他的官员说:“我们可以看看另一张纸条就知道,他抽的是哪一张了!”最后终于重获自由了。

师:大臣终于还是重获了自由。

[设计意图:是前面故事的延续,形成一条教学主线,“生死”签的改变等同黄白球的`变化引起可能性大小的变化,增强了学生学习的趣味性。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

2、选择合适的数填在括号内,表示事情发生的可能性。

(1)公鸡生蛋的可能性是()。

(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。

(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。

(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。

[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]

3、根据可能性的大小,猜一猜遮住部分有几个球?

[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]

4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?

[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]

四、全课小结。

1、师:通过本节课的学习,你对可能性问题有什么新的认识?

(能用分数表示可能性的大小)

[给自己一个梳理知识的机会,通过提示性的引导,让学生连贯的概括出可能性的大小与数量有关,可以用分数表示可能性的大小。]

可能性教学设计 篇6

[教学目标]

1、运用分数表示可能性的方式,能自主的设计一些活动方案。

2、对实际生活中的事件与现象,能运用可能性的知识进行合理的设计。

[教学过程]

1、复习分数表示可能性大小的方式。

2、教师向学生提出设计方案的具体要求。(投影出示题目)

3、小组合作设计方案

各小组在设计时,教师不要作过多的提示,要充分发挥学生的想象力,以便学生设计出各种与众不同的设计方案。

4、汇报交流

在交流时,首先请各小组汇报各自设计的方案并说一说设计时的想法。对于不符合设计要求的方案,教师也不要急于否定,而应让学生说一说他们的想法,并结合他们的想法加以引导。

5、归纳设计特点

学生在交流汇报后,教师可以把每一种每一种方案的设计均用分数的形式表示出来,并引导学生观察各种不同方案中的共同点,从中发现设计的基本特点。

6、课堂练习

88页做一做,生独立做。

7、布置作业

88页的实践活动。

学生可独立设计,也可以是以小组为单位设计。

第4课时

[教学内容]数学与生活(第91页)

[教学目的]本节课设计的活动目的是将学生所学的知识进行综合,并能解决一些实际问题。

[教学过程]

1、复习

在开展活动前,先组织学生复习分数的认识与加减法的知识内容。

2、投影出示活动题目

呈现数据表后,可以请学生根据所提供的信息,自己提出数学问题,并能自己解答。

3、组织活动

师按顺序当场组织学生开展调查活动,了解本班学生迎新年的设想(也可让学生以小组的形式进行)。

4、组织“长跑接力”活动的讨论

这一活动应组织学生开展多次讨论。第一次讨论5个接力点的位置,每个位置的确定都应该是有根据的。第二次讨论位置设计的合理性问题,要让学生说一说不合理的理由。第三次讨论重新设计的'问题,在讨论前也可以让学生独立思考,然后再组织讨论新的设计。

第5课时

[教学内容]有奖游戏(第92页)

[教学目的]

1、使学生能用所学知识解决一些实际问题。

2、密铺活动有助于学生进一步体验所学图形的特征,感受数学在实际生活中的应用,发展空间观念。

[教学过程]

1、投影出示“有奖游戏”图

2、让生表示游戏获奖的可能性

先让生仔细观察投影图,再把每一种游戏获奖的可能性表示出来。

3、学生小组讨论

“有奖游戏”是一个开放性的活动,学生不一定以中奖的可能性大小来确定参加的游戏,它还包括各人对奖品的喜爱程度。

4、让学生说一说自己愿意参加的项目,并说出理由。

5、布置作业

调查生活中的有奖游戏,并自己设计一个“有吸引力”的游戏。