六年级数学教学设计
此篇文章六年级数学教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
六年级数学教学设计 篇1
教学目标
1、让学生在商品打折销售的情境中理解折扣的意义。
2.学生在掌握求一个数的百分之几是多少这种问题的'基础上自主解决问题,培养学生解决实际问题的能力。
3.养成独立思考、认真审题的学习习惯。
教学重点:理解折扣的意义。
教学过程
教学设计备注
活动一、创设情景理解折扣的意义
师:利用课件或挂图出示商场店庆、商品打折的情境。
问:打折是什么意思?八五折、九折表示什么?
生:结合实际了解到的信息进行思考和交流,再阅读课本进行对照分析。
小结:商店降价出售商品叫做折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。
问:七五折表示什么?五折表示什么?
活动二、自主探索解决问题的方法
1、出示例4
2、让学生独立解答
3、集体汇报时请学生说说自己的解题思路,并且两个问题加以比较
板书:(1)18085%=153(元)
(2)160(1-90%)=16(元)
师生共同总结解题方法
活动三、实践应用
1、第97页做一做
学生独立完成并说出各折扣表示的意思
2、第101页第1、2、3
活动四、课堂总结
学生谈谈学习本课有什么新的收获。
板书设计:(1)18085%=153(元)
(2)160(1-90%)=16(元)
六年级数学教学设计 篇2
教学目的:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
1、理解圆周率的意义。
2、推导并总结出圆的周长的计算公式并能够正确计算。
教学难点:
深入理解圆周率的意义。
教学过程:
一、复习准备:
(一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?
(二)创设情境:龟兔赛跑。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
二、新授教学。
(一)定义。
1、小乌龟跑的路程就是正方形的什么?小白兔呢?
2、什么是圆的周长?请你摸一摸你手中圆的周长。
3、今天我们就来研究圆的周长。
(二)推导圆的周长公式。
1、学生讨论。
(1)正方形的周长和谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2、猜测。
看图后讨论:圆的周长大约是直径的.几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?
3、实践操作。
(1)目的:用不完全归纳法得出圆的周长约是直径的几倍。
(2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。
(3)填写表格。
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(4)汇报小结
看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?
(三)认识圆周率、介绍祖冲之。
1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。
2、介绍祖冲之。
(四)总结圆的周长公式。
1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=d
2、圆的周长还可以怎样求?
教师板书:C=2r
3、圆的周长分别是直径与半径的几倍?
(五)课堂反馈。
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
三、巩固练习。
(一)判断。
1、=3.14()
2、计算圆的周长必须知道圆的直径。()
3、只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1、较大的圆的圆周率()较小的圆的圆周率。
a大于b小于c等于
2、半圆的周长()圆周长。
a大于b小于c等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。
四、课堂小结:
通过这堂课的学习,你有什么收获?你还有什么问题吗?
五、课后作业。
(一)求下面各圆的周长。
1、d=2米
2、d=1.5厘米3.d=4分米
(二)求下面各圆的周长.
1、r=6分米
2、r=1.5厘米
3、r=3米
六、板书设计。
圆的周长
C=dC=2r
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
活动要求:
1、各个组成部分面积分配合理,布局合理。
2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。
3、要有娱乐活动场所、休息场所、小路。
4、算出各个部分的面积。
六年级数学教学设计 篇3
课题:按比例分配
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重点、难点:理解按比例分配实际问题的意义,掌握解题的关键。
对策:
引导学生分析明晰题意。
教学预案:
一、 基本训练:
1、根据信息你想到了什么?
六2班男生与女生的比是4:5
(1) 男生是4份,女生是5份,一共是9份;
(2) 男生相当于女生的4/5,女生相当于男生的5/4
(3) 男生占全班人数的4/9,女生占全班人数的5/9
2、根据已知条件回答问题:(第76页上第6题)
二、自主探究:
1、 出示例题5题目和方格图,让学生独立完成,先算一算,再涂一涂。
2、 组织交流:你是怎样解决这个问题的?你是怎样想的?
生1:根据红色与黄色方格数的比是3:2,可以想到:把30个方格平均分成5份,3份涂红色,黄色涂2份。
列成算式是:
30(3+2)=305=6(格) 每一份有几格
因为红色有这样的3份,所以红色:63=18(格)
因为黄色用这样的2份,所以黄色:62=12(格)
教师追问:怎样验证这个答案是正确的?
生2:根据红色与黄色方格数的比是3:2,可以想到:红色方格占总格数的3/5,黄色方格占总格数的2/5
列成算式:
红色:303/(3+2)=303/5=18(格)
黄色:302/(3+2)=302/5=12(格)
3、你是用哪种方法解决的?这两种方法你都理解吗?和你的同桌再说说解题思路。
三、理解体会:
1、出示第75页上的试一试:
(1) 齐读要求,提问:现在将这些方格按怎样的比来分配?说说1:2:3是什么意思?
(2) 独立完成,组织交流。
2、你觉得今天的问题已知什么?(已知总数和分配的比,将总数按一定比分割成几部分)要求的是什么?(将求按这样分配后的各部分的结果分别是多少?)
像这样,将总数按一定的比进行分割成几部分,我们称之为按比例分配问题。(出示课题:按比例分配问题。)
3、在解决时我们关键要理解是按怎样的比来分配。解答时可以怎样想?(转化成整数问题,先求出一份是多少?再求出这样的几份是多少?)还可以怎样想?(先转化成要求的量分别是总数的几比几,再按分数乘法问题进行计算)
四、巩固提高
1、练一练第1题:学生独立完成,指名板演,组织交流。
2、练一练第2题:提问:在这里将180块巧克力怎么分配?你从那句话中看出来的?帮助学生理解把180按35:31:24进行分配。
3、练习十四第2题:读题理解要求,引导学生看图估计出已用去的时间与剩余时间的比,并说出是怎样想的。(把图中的白色部分平均分成两份,可以看出已用去的时间与剩下时间的比大约是1:2。)那么这题实质是求什么?(将90分钟时间按1:2进行分配,求比赛剩下的时间是多少分?)
4、练习十四第4题:
先让学生独立思考一会儿,再组织交流:这题符合今天的特征吗?那要分配的总数是什么?(引导学生注意隐含条件:三角形的内角和是180度)现在你会解决吗?
5、补充:
出示一条线段,要求按1:5将线段分成两部分。
学生独立操作完成,组织交流。
五、全课总结:通过今天的学习,你有什么收获?
转化解答按比例分配问题的策略。
按比例分配是把一个数量按照一定的比进行分配。解决一些常见的、较简单的按比例分配问题,能在实际应用中加强比的概念。
按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。兔子卡通把比看作份数,小鸟卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(305=6)刚好涂完。所以红色方格一共有3053=18(格),黄色方格一共有3052=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的2/5,所以两种颜色的格数分别用303/5和302/5计算。
教学例题时要沟通两种解法的联系,要提倡小鸟卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题,引导学生用分数乘法来解决问题。
试一试里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。
练一练第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。教师要重点帮助学生理解把180块巧克力按班级人数的比分给三个班就是把180按35:31:24进行分配。这道题还是解答练习十四第2、8题的平台。
课后反思:
本课时的教学内容是引导学生应用比的意义和基本性质解答有关按比例分配的实际问题。由于在学习比的意义时学生已能根据两个数量间的比用分数来表述两者的关系,所以在教学例题5时,我给学生充分独立思考和解答的'时间,让学生自主进行探索。在交流解法时,很多学生思维活跃,发言积极,想出了很多种解法。这时我再及时引导学生将这些方法进行总结,并突出了用分数乘法来解题的这种方法。在新知的学习中,我还请学生思考如何进行检验,学生们联系题中的信息想到了可以将求出的两个数量组成比进行化简,再将这两个数量的和求出来,与已知信息进行比较进行检验。
整节数学课上,鼓励学生独立思考,主动探索,充分发挥学生学习主动性,课堂气氛活跃、和谐,提高了课堂教学效率的有效性。
课前思考:
按比例分配是一种分配思想,在生活生产中是很常见的。已学过的平均分配其实是按比例分配的一种特例。教学中要通过解决实际生活中的问题,让学生了解在生产生活中要把一个量按照一定的比例来分配,从而感悟按比例存在的价值。
学生在平时有一定的体验,所以在新知形成过程中,首先让学生根据原有的知识尝试解决问题,变被动接受学习为主动研究性学习。其次,鼓励解决问题策略的多样化,并充分展示学生的思考过程。在解决问题的过程中使学生体会到同一问题可以从不同角度去思考,得到不同解决问题的方法,这有利于学生多向思维的发展。
课后反思:
在练习十四第4题后,进行相应的练习后,出示一道练习题:一个三角形的三个内角度数的比是2∶3∶4,这个三角形是什么三角形?
生1:是锐角三角形,因为通过计算,我知道三个内角分别是40,60,80所以是锐角三角形。
师:你讲得非常好。
生2:不要把三个角都求出来,只要求一个最大的角就行了:1804/9=80,所以是锐角三角形。
师:你分析问题的方式很独特,分析得很有道理。
生3:其实一个角也不用求,就知道它是锐角三角形,因为三个角加起来是9份,而最大的角只占4份,没有达到9份的一半,也就是它的度数没有达到180的一半,所以是锐角三角形。
说句实在话,当时我都有点听蒙了。
师:哪个同学能把的想法重说一遍?
生4:
师:那如果三个内角的度数比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?
反思中的反思:
学生是可畏的,更是可敬的。在练习阶段,学生能运用所学的知识和原有的经验解决问题,在宽松、和谐、民主的氛围中,学生思维是如此的活跃,方法是如此的灵活,体现了思维的价值,很好地诠释了尝试从不同角度寻求解决问题的方法,并能有效地解决问题的新课程精神。
课后反思:
这课内容按照知识点来划分属于按比例分配内容,解决这类问题的策略有两个:一是将比转化成份数来理解,先求出每一份是多少;二是将比转化成分数,然后按照分数应用题来解答。这两种方法共同的数学思想方法是转化。
在课堂教学中,学生能结合具体图例,自己想到这两种解答方法,在师生的进一步对话中,体会到用这两种方法解答时,都得渗透对应思想。
六年级数学教学设计 篇4
教学目的:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:
用比例知识解答比较容易的归一、归总应用题。
教学难点:
正分析题中的比例关系,列出方程。
教具准备:
投影仪
教学方法:
讲练结合
教学过程:
一、创设情境,提出问题
1.一辆汽车行驶的速度不变,行驶的时间和路程。
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
3、这节课,我们就应用比例的知识解决一些实际问题。
二、探究交流,解决问题
1、教学例题
(1)出示例题:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的'水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是χ元。
12.8/8=χ/10
8χ=12.8×10
χ=128÷8
χ=16答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例题的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例题
(1)出示例题:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例题的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固应用,内化提高
1、教科书练习第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习第5、6、7题。
四、、回顾整理,反思提升
用比例知识解决问题的步骤是什么?
板书:
用比例解决问题
1、分析题意
2、分析各数量之间的关系
六年级数学教学设计 篇5
【教学内容】:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
【教学目标】:
知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
【教具准备】:
多媒体课件,圆片等。
【教学方法】:自主探究法
【教学过程】:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
3、圆的'面积计算公式的推导。
小组合作讨论以下问题:
a、拼成的近似长方形的面积和圆的面积有什么关系?
b、长方形的长与圆的周长有什么关系?
c、长方形的宽与圆的半径有什么关系?
d、你能找出圆的面积计算方法吗?
长方形的面积=长×宽,
所以圆的面积=()×()=()
学生在小组内积极讨论,探究、分析,并将结果汇报。
长方形的长是圆周长的一半,长方形的宽是半径(r)
因为长方形的面积=长×宽
所以圆的面积=∏r×r=r2
齐读公式S=∏r2强调r2=r×r(表示2个r相乘)
同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.
三、巩固运用、形成技能
1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?
2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?
(1)课件出示例1
(2)学生独立审题
(3)教师板演解答过程.
3、求下面圆的面积r=3md=5cm
①学生独立完成
②集体核对时,强调要先算平方再算乘法。
4、判断题(课件出示)
5、拓展练习:机动题
小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??
四、课堂总结、深化认知:这节课,你有哪些收获?
五、作业:练习十六2.4题.
附:板书
圆的面积
长方形面积=长×宽
↓↓↓
圆的面积=圆周长的一半×半径
=∏r×r
=∏r2
例1:r:20÷2=10(m)
S:3.14×102=314(m2)
答:它的面积是314m2。
六年级数学教学设计 篇6
课例名称
“算出它们的普及率”。
活动目标
1、使学生能应用百分数的知识计算出本班同学家庭的电话、电脑的普及率,并能进行简单的比较、分析和估计发展趋势,培养学生比较、分析等思维能力和实践能力。
2、使学生体会和感受数学与生活的联系,逐步培养学生应用数学知识的意识和能力。
3、使学生认识到改革开放后我国人民生活水平迅速提高,增强热爱社会主义祖国的思想感情。
情景一:
师:同学们,老师昨晚想通知大家今天带计算器,可以用什么方法呢?
生1:可以打我们家的电话,或打爸爸、妈妈的手机。
生2:发电子邮件。我的E-mail是……
生3:您只要通知我一个人,然后我去通知5个人,被通知的同学再分别通知5个同学,这样又快又好。
师:我班同学家里有电话的很多,有电脑的也不少。今天,我们来调查一下,我班谁家已安装了电话,谁家购买了电脑。
生1:老师,不用调查了。我这儿有全班同学家的电话。我班100%同学家里有电话。
生2:我们可以调查哪些同学家里有手机或小灵通这些移动电话,这样方便联系。
师:(生1)李××,你真是一个有心人。100%同学家里有电话,可以说成电话的普及率是100%。在我们的生活里,经常要计算和使用“普及率”。这节课,我们就来计算一些普及率。如家庭移动电话普及率、电脑普及率等。
评析在这一环节中,能及时改变原来的教学预设,给了学生一次展示的机会,其意义将是深远的。
情景二:
学生分组统计后汇报统计和计算的百分率结果。
师:我班同学家庭移动电话的普及率是多少?你是怎样计算的?
生1:移动电话的普及率是96.6%,就是求出已有移动电话的56个家庭数占全班58个家庭数的百分之几。
生2:老师,我觉得应说“大约是96.6%”。
生3:我班同学家庭有电脑的是39户,普及率大约是67.2%。
师:你能根据计算的结果推算出本地区电话和电脑的普及率大约是多少吗?
生1:我认为我们南通市居民的固定电话普及率接近100%,移动电话的普及率大概是95%,电脑的.普及率低一些,可能有60%。
生2:我不完全同意你的观点。不能认为我班同学家庭电话普及率是100%,就认为南通市居民的固定电话普及率接近100%,你要考虑到南通市还有比较贫困的地方。应该说,学田地区的电话普及率接近100%。
生3:我同意刚才同学的观点。因为我班同学大部分住在学田新村,如果要调查南通市居民的固定电话普及率,还应该到其他学校或新村去调查。
师:你想得真周到,你认为应怎样调查呢?
生3:我想在南通市的东西南北中各确定一个学校或新村去调查统计才准确。
师:也就是说,推算和估计普及率要考虑我班同学家庭的经济状况在南通地区处于什么水平。
评析在这个过程中,让学生尽情地展示自己最为真实的思想,不必考虑教师希望他说什么,而在意“我”自己的观点,是否准确,是否独特,是否有自己的个性。教师的鼓励与反馈“有利于创造活动的一般条件------心理的安全和心理的自由”。学生在心理安全的环境中,才能大胆猜想,质疑问难,发表不同意见。
情景三:
师:通过这一次实践活动,你有哪些体会?
生1:我懂得了通过调查统计后,能求出某种东西的普及率。
生2:我知道电脑的普及率比电话的普及率低,我们可以把调查的结果反馈给电脑商,让他们加强宣传的力度,多搞促销活动。
生3:我知道了我们学习的统计和百分数的知识很有用。
生4:我觉得生活水平提高了,因为我奶奶说,以前人憧憬“楼上楼下,电灯电话”这样的好日子,现在我们不但有了电灯电话,还有了电脑,有人家还有了私家车呢!
生5:……
师:我们还可以进行哪些有意义的调查活动?
生1:我班同学戴眼镜的很多,可以调查我班的近视率,或全校的近视率,引起大家的重视。
生2:我经常看到有同学在校外的小摊买零食。我想调查一下我班同学每月零花钱的用法,到底有多少钱买学习用品,多少钱买零食。
生3:我想调查有多少人还知道张思德,现在许多同学知道“小燕子”赵薇,不知道英雄张思德了。
生4:我想调查南通市有多少贫困家庭。
生5:……
评析学生是课堂的主体,给学生提供参与的机会,凡是学生能操作的,能颔悟到的,教师绝不包办代替。不刻意要求学生与教师思维一致;不刻意要求个别学生给出的答案对全班具有代表性。数学教学应当培养学生的发现、提问、分析和解决问题的能力。
数学课程标准的基本理念之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”这堂实践活动课是在学生初步学习了百分数的意义和应用后安排的。活动内容来源于生活,能使学生感受到数学就在身边,让学生感受到数学与生活是密不可分的。小学生的思维正逐渐从具体形象思维向抽象思维过渡,但这并不意味着学生就不需要具体形象思维。数学来源于生活,但高于生活,具有一定的抽象性和逻辑性。著名数学家华罗庚说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
对学生来说,如果始终是被动地接受,像成人一样地学习,他们就会觉得学习数学是索然无味的,他们的主动性、积极性、创造性会渐渐地沉睡起来,他们会渐渐地疏远数学。实践活动使学生从被动型向主动型转变,重复性向创新性过渡,有利于学生个性的发展,有利于学生创新意识和实践能力的培养。生动有趣的实践感受使学生觉得数学并不枯燥。让儿童在自己的世界里用自己喜爱的方式探究数学,在探究中体验数学、享受数学。当数学与儿童的现实生活密切结合时,数学才是活的,富有生命力的。
提倡学生用自己的话说收获,而不是仅仅重复教师的讲授,面对着具有鲜活生命和灵动个性的学生,教师更多地关注学生在数学活动中表现出来的情感与态度,应当给予积极的评价,为学生提供自由表达自己思想、表述自己观点、实现自己思维飞跃的舞台,帮助他们认识自我,建立学习自信心,教师成为学生学习过程中的欣赏者、支持者和引领者。
如何正确认识数学实践活动,如何上好数学实践活动课,数学实践活动课以怎样的模式呈现,是我们迫切需要解决的问题。我感觉到这是极其新鲜而富有挑战性的。在探索中,我了解到实践活动是“做数学”的具体表现,它是以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态,让学生在解决具体问题的过程中,对数学本身的探索中理解、掌握和应用数学。实践活动是一种研究性学习,学生应经历一个收集信息、处理信息和得出结论的完整过程。这节课给我留下的启迪是:当你真正将新课程的理念落实到具体的教学行为时,学生会还你一个惊喜!
返回首页