返回首页
智远网 > 短文 > 教案 > 正文

直线数学教案

2025/08/05教案

此篇文章直线数学教案(精选5篇),由智远网整理,希望能够帮助得到大家。

直线数学教案 篇1

学习目标:

1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

学习过程:

一、课前预习导学

1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

第1题

第2题

3、如图,若是中点,是中点,

(1)若,_________;

(2)若,_________。

二、课堂学习

1、议一议:

(1)、在平面内画一个点,过这个点画直线,能画多少条?

(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

总结:“过两点有______,并且____”

思考:过平面上三点中的每两点画直线,可画多少条?

2、做一做:已知两点a、b

(1)画线段ab(连接ab)

(2)延长线段ab到点c,使bc=ab

注意:我们把上图中的点b叫做线段ac的。

3、想一想:

(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

(2)如何用符号语言表述中点的概念?

总结:如果点b是线段ac的中点,那么;

如果,那么b是线段ac的中点。

4、知识运用:

例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

练习:

1、如图ab=8cm,点c是ab的中点,点d是cb的中点,则ad=____cm

2、如图,下列说法,不能判断点c是线段ab的中点的是()

a、ac=cbb、ab=2acc、ac+cb=abd、cb=0.5ab

3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

三、课堂检测1.下列说法中,正确的是()

a.射线oa和射线ao表示同一条射线;b.延长直线ab;

c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

2.如果要在墙上固定一根木条,你认为至少要钉子()

a.1根b.2根c.3根d.4根

3.如图,若是中点,是中点,

(1)若,,_________;(2)若,_________。

4.如图在平面内有a、b、c、d四点,按要求画图。

(1)画直线ab、射线bc、线段bd

(2)连结ac交bd于点o

(3)画射线cd并反向延长射线cd,

(4)连结ad并延长至点e,使ad=de。

四、课后作业

1、下列说法中正确的是()

a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米

2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

4、已知线段mn=7,点p在直线mn上,且mp=3,则np=。

5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

直线数学教案 篇2

教学目标

1. 让学生在观察、画图和交流等活动过程中,认识射线和直线,掌握线段、射线和直线的特点及其联系。了解从一点可以画无数条射线,经过一点可以画无数条直线,并在具体的情境中,体会两点确定一条直线,知道两点间的距离。

2. 让学生进一步加深对角的认识,会用符号表示角,知道角的各部分名称及相应的读法。

3. 培养学生的空间观念,能应用所学知识描述生活现象。

教学过程

一、 感知射线从生活中引入

教师打开激光灯,光线射向教室对面的墙壁上。

提问:在墙上你看到了什么?(一个光点)这个光点是从哪里发出的?

再问:如果把激光灯的发射点和墙上的光点看作两个端点,那么中间的一条光线可以看作什么?

根据学生回答,板书:线段。

提问:线段有什么特点?

学生回答后,让学生根据线段的特点画一条3厘米长的线段。

[评析:用学生熟悉、喜爱的激光灯射出的光线引入,贴近学生的生活。同时,及时将具体的生活实例上升为抽象的数学概念,有机孕伏与复习了线段的特点,为射线的学习打下了基础。]

提问:如果把激光灯射出的红色光线射向天空,你还能找到光线尽头的那个光点吗?(不能)这条光线会怎样?(这条光线会射得很远很远,看不到尽头。)

追问:这条光线还能用线段表示吗?为什么?

讲解:对!我们可以把这样的光线看作是射线。(板书:射线)

出示教材第16页的情景图。

提问:这幅美丽的夜景图中,那五光十色的灯光都可以看作是射线吗?为什么?

谈话:但图上只能看到这些光线的一部分,你准备用什么方法清楚地画出这些射线呢?请大家在自己的练习本上试着画一画。

学生画出的图形可能有:

反馈时引导学生通过交流、比较,明确:射线只有一个端点,可以向一端无限延长。

提问:你还能举出生活中有关射线的例子吗?

[评析:揭示了线段的概念后,通过光线射向天空,射得很远很远,看不到尽头,让学生初步感受无限。同时,让学生在尝试画射线的活动中理解和体会无限延长的含义,感受并理解射线的特点。]

二、 认识直线在操作中体会

谈话:想象一下,如果把线段的两端都无限延长,会得到怎样的一条线呢?你会画一画吗?

学生画出的图形可能有:

师生共同评价,并通过讨论明确:直线没有端点,可以向两端无限延长。

讲解:(指学生画出的直线)我们把这样的线叫做直线。(板书:直线)

提问:那你会把一条射线变成一条直线吗?

指名在实物投影上把射线的一端无限延长,得到一条直线。

小结:直线有哪些特点?

[评析:在对射线充分感知的基础上,让学生大胆想象,自己画直线,使学生对直线的认识建立在实际操作和想象的基础上。同时,要求学生将射线变成直线,让学生在具体的活动中体会射线与直线的联系与区别。]

三、 形成概念在比较中整理

谈话:我们在认识了线段的基础上,又认识了射线和直线,请同学们思考一下:线段、射线、直线有什么相同点和不同点?可以在小组内互相讨论。

学生活动后,组织交流。(根据学生回答教师整理线段、射线和直线的相同点和不同点,并板书。)

完成想想做做第1题。

出示题目。

学生口答,并说一说判断的理由。

[评析:线段、射线和直线的联系和区别是本节课的重点内容,教师放手让学生将所学知识进行系统整理,使学生在归纳中有效区分三者的不同点和相同点,加深了对射线和直线的认识,形成了合理的知识结构。]

四、 知识延伸在实践中提炼

1. 画一画。

提问:如果老师要你画一条线段、射线、直线,你会画吗?(学生按要求画图)

再问:如果老师要你画一条5厘米长的线段、射线、直线,你会画吗?为什么?

谈话:如果老师要你以一个点为端点画一条射线,你会画吗?试一试从这个端点能画几条这样的射线?(学生尝试画图)

小结:从一点起能画出无数条射线。

谈话:如果老师要你经过一点画一条直线,你会画吗?可以画几条?先想一想,再试一试。

小结:经过一个点可以画无数条直线。

提问:如果老师要你经过两点画一条直线,你会画吗?可以画几条?

学生尝试画图,并组织交流。

小结:经过两点只能画一条直线。

2. 说一说。

谈话:其实两点确定一条直线的例子在生活中用得很多。你能找到这样的例子吗?(学生举例)

[评析:让学生在画线段、射线和直线的交流与实践过程中,既巧妙复习了线段、射线和直线之间的联系,又适时归纳出经过一点可以画出无数条射线,经过一个点可以画无数条直线和经过两点只能画一条直线。同时,将两点确定一条直线的知识及时拓展到在现实生活中,帮助学生体会数学的实际价值。]

3. 想一想。

出示下图,谈话:小明从学校回家有A、B、C三条路线可以走,你认为小明选择哪条路回家最近?

谈话:这只是我们凭生活经验得出的结论,如果量一量呢?请同学们动手量一量。

学生反馈测量结果。

谈话:两点间所有连线中线段最短,连结两点的线段的长度就是两点间的距离。

让学生在纸上画两个点,量出它们之间的距离。

[评析:创设具体的生活情境,让学生通过观察、比较、测量、交流,明确两点间所有连线中线段最短,连结两点的线段的长度就是两点间的距离,从而将学生的生活经验上升为数学知识。]

五、 角的概念在自学中获取

谈话:通过刚才的学习,我们知道经过一个点可以画无数条射线(指学生画的从一点引出多条线段的图形),请同学们看这里的图,你能从中找到我们已经认识的图形吗?

谈话:我们在二年级时已经初步认识了角。请大家想一想,关于角我们已经知道了些什么。再打开课本第17页,自学例题,和小组里的同学说一说对于角,你又有什么新的认识。

学生自学后,组织反馈,并通过讨论使学生弄清以下问题:什么是角?角由哪几部分组成?角用怎样的符号来表示?

提问:你能画一个角,并标出角各部分的名称吗?自己试一试。

学生活动后,师生共同评价。

[评析:由经过一点可以画无数条射线巧妙地引入角,形象地突出了角的两条边是射线这一关键,使学生对角的认识在原有的基础上得到了提升。]

六、 练习拓展在辨析中提升

1. 完成想想做做第3题。

提问:图中有几条射线,组成了几个角?它们各是什么角?

引导学生有序观察、思考,明确锐角比直角小,钝角比直角大。

七、 回顾反思在生活中延伸

总结:通过今天的学习活动,你有什么收获?

延伸:在我们的生活中藏着很多数学知识。我们今天学习的内容在生活中也有很多应用,同学们课后可以继续找一找,看一看,并将你的发现与其他同学分享。

直线数学教案(通用10篇)

作为一名无私奉献的老师,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的直线数学教案,欢迎阅读,希望大家能够喜欢。

直线数学教案 篇3

教学目标

1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.

2.通过直线、射线、线段概念的教学,培养学生的几何想象能力和观察能力,用运动的观点看待几何图形.

3.培养学生对几何图形的兴趣,提高学习几何的积极性.

教学重点和难点

直线、射线、线段的概念是重点.对直线的“无限延伸”性的理解是难点.

教学过程()设计

一、联系实际,提出问题

1.让学生举出实际生活中所见到的直线的实例(可请5~6位学生发言).

2.教师总结:铅笔、尺子、桌子边沿等都有长度,是可以度量的,它们都是直线的一部分,此时给出直线的'概念“直线是向两个方向无限延伸着的.”继而提问“无限延伸”怎样解释,教师可形象的归纳出“直线是无头无尾、要多长有多长.”让学生闭起眼睛想象一下.

再提问:在我们以前学过的知识中有没有真正是直线的例子?(数轴)

3.通过前面学生所举的例子,给出线段定义“直线上两个点和它们之间的部分叫做线段.”

4.教师画出一条直线,并在直线上标出一条线段,然后擦掉一部分,只剩下一条射线,先看它与直线、线段的区别,后给出射线的定义:“直线上的一点和它一旁的部分叫做射线.”

二、正确表示直线、射线和线段

1.直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线l;直线m,直线AB;直线CD.(板书表示出来)

2.线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字.如:线段a;线段AB.(板书表示出来)

3.射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a;射线OA.(板书表示出来)

三、运动变化,找出联系

1.让学生找出三者之间的区别:端点的个数,0个,1个,2个.

2.教师通过图示将线段变化为射线、直线.指出事物之间都不是孤立的,静止的,而是互相联系的,变化的.

(1)先画出线段AB,然后向一方延长,成为一条射线,再向相反的方向延长,成为一条直线.告诉学生:线段向一方延长就会成为射线,向两方延长就会成为直线.因此,直线、射线都可以看作是由线段运动而成的.

(2)再画出一条直线,在直线上任找一点,擦掉一点一旁的部分,就成为一条射线,在射线上再找一点,两点之间的部分就成为一条线段.

四、回到实际,巩固概念

1.让学生举出生活中的直线、射线和线段的事例.如:手电筒的光线,灯泡发出的光线等.

2.练习:

(1)如图1-1,A,B,C,D为直线l上的四个点.

问:图中国共产党有几条线段?以C为端点的射线有哪几条?

(2)如图1-2,A,B,C为平面上的三个点,分别画出过点A,B;点A,C;点B,C的三条直线.

(3)如图1-3,P是直线l外一点,A是直线L上一点.过P,A作一条直线;过A作一条射线.

(4)如图1-4,图中国共产党有多少条线段?

五、小结

1.教师提问:(1)本节课你掌握了几个几何概念?

(2)直线、射线和线段三者之间的关系是什么?

(3)本节课应该理解哪几个关键词?

(4)在表示直线、射线和线段时应注意什么?

在学生回答的基础上教师给以完善和补充,并进一步强调三者之间的关系.同时指出这三个概念是平面几何的基础.

2.再设问:直线还有什么性质呢?为下节课讲直线的性质埋下伏笔.

六、作业 p.11,1;p.12,3;p.14,1.2.

直线数学教案 篇4

第06课时

2、2、3 直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

一、学前准备

复习:

1、若由 共线,则存在实数 ,使得 ,

2、设 为 方向上的 ,则 =︱ ︱ ;

3、经过点 ,倾斜角为 的直线的普通方程为 。

二、新课导学

探究新知(预习教材P35~P39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点 ,则 = ,

而直线

的单位方向

向量

=( , )

因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

,倾斜角为 的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

解:

例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程.(教材P37例2)

解:

反馈练习

1.直线 上两点A ,B对应的参数值为 ,则 =( )

A、0 B、

C、4 D、2

2.设直线 经过点 ,倾斜角为 ,

(1)求直线 的参数方程;

(2)求直线 和直线 的交点到点 的距离;

(3)求直线 和圆 的两个交点到点 的距离的和与积。

三、总结提升

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为( )

A.很好 B.较好 C. 一般 D.较差

课后作业

1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

直线数学教案 篇5

教学目标

1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.

2.通过直线、射线、线段概念的教学,培养学生的几何想象能力和观察能力,用运动的观点看待几何图形.

3.培养学生对几何图形的兴趣,提高学习几何的积极性.

教学重点和难点

直线、射线、线段的概念是重点.对直线的“无限延伸”性的理解是难点.

教学过程()设计

一、联系实际,提出问题

1.让学生举出实际生活中所见到的直线的实例(可请5~6位学生发言).

2.教师总结:铅笔、尺子、桌子边沿等都有长度,是可以度量的,它们都是直线的一部分,此时给出直线的概念“直线是向两个方向无限延伸着的.”继而提问“无限延伸”怎样解释,教师可形象的归纳出“直线是无头无尾、要多长有多长.”让学生闭起眼睛想象一下.

再提问:在我们以前学过的知识中有没有真正是直线的例子?(数轴)

3.通过前面学生所举的例子,给出线段定义“直线上两个点和它们之间的部分叫做线段.”

4.教师画出一条直线,并在直线上标出一条线段,然后擦掉一部分,只剩下一条射线,先看它与直线、线段的区别,后给出射线的定义:“直线上的一点和它一旁的部分叫做射线.”

二、正确表示直线、射线和线段

1.直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线l;直线m,直线AB;直线CD.(板书表示出来)

2.线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字.如:线段a;线段AB.(板书表示出来)

3.射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a;射线OA.(板书表示出来)

三、运动变化,找出联系

1.让学生找出三者之间的区别:端点的个数,0个,1个,2个.

2.教师通过图示将线段变化为射线、直线.指出事物之间都不是孤立的,静止的,而是互相联系的,变化的.

(1)先画出线段AB,然后向一方延长,成为一条射线,再向相反的方向延长,成为一条直线.告诉学生:线段向一方延长就会成为射线,向两方延长就会成为直线.因此,直线、射线都可以看作是由线段运动而成的.

(2)再画出一条直线,在直线上任找一点,擦掉一点一旁的部分,就成为一条射线,在射线上再找一点,两点之间的部分就成为一条线段.

四、回到实际,巩固概念

1.让学生举出生活中的直线、射线和线段的事例.如:手电筒的光线,灯泡发出的光线等.

2.练习:

(1)如图1-1,A,B,C,D为直线l上的四个点.

问:图中国共产党有几条线段?以C为端点的射线有哪几条?

(2)如图1-2,A,B,C为平面上的三个点,分别画出过点A,B;点A,C;点B,C的三条直线.

(3)如图1-3,P是直线l外一点,A是直线L上一点.过P,A作一条直线;过A作一条射线.

(4)如图1-4,图中国共产党有多少条线段?

五、小结

1.教师提问:(1)本节课你掌握了几个几何概念?

(2)直线、射线和线段三者之间的关系是什么?

(3)本节课应该理解哪几个关键词?

(4)在表示直线、射线和线段时应注意什么?

在学生回答的基础上教师给以完善和补充,并进一步强调三者之间的关系.同时指出这三个概念是平面几何的基础.

2.再设问:直线还有什么性质呢?为下节课讲直线的性质埋下伏笔.

六、作业 p.11,1;p.12,3;p.14,1.2.