《分数除法》数学教案
此篇文章《分数除法》数学教案(精选4篇),由智远网整理,希望能够帮助得到大家。
《分数除法》数学教案 篇1
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的.针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
《分数除法》数学教案
作为一位无私奉献的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编帮大家整理的《分数除法》数学教案,仅供参考,大家一起来看看吧。
《分数除法》数学教案 篇2
教学目标
1、使学生理解两个整数相除的商可以用分数来表示、
2、明确分数与除法的关系,加深学生对分数意义的理解、
教学重点
理解、归纳分数与除法的关系、
教学难点
用除法的意义理解分数的意义、
教学步骤
一、铺垫孕伏、
1、读题说得数、
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2、口述表示的意义、
3、列式计算、
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知、
1、新课导入、
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了、(板书、分数与除法)
2、教学例2、
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米、(板书米)
(2)学生完整叙述自己想的过程、
(3)反馈练习、
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3、教学例3、
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流、
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块、
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块、(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义、
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是、
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份、
(6)反馈练习:说说下面分数的两种意义
4、归纳分数与除法的关系、
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子、也就是说分数既表示分数的意义,又表示整数除法的商、
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数、
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习、
三、全课小结、
通过今天的学习,你明白了什么?
四、随堂练习、
1、填空、
分数可以用来表示除法算式的()、其中分数的分子相当于(),分母相当于()、
2、用分数表示下列各式的商、
4÷511÷1327÷35
9÷913÷1633÷29
3、列式计算、
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业、
用分数表示下面各式的商、
3÷47÷1216÷4925÷249÷9
《分数除法》数学教案
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!以下是小编精心整理的《分数除法》数学教案,希望能够帮助到大家。
《分数除法》数学教案 篇3
教学目标
1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.
2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.
教学重点
理解分数乘、除法应用题的异同点,会正确解答.
教学难点
能正确解答分数乘、除法应用题.
教学过程
一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1、花手绢的块数是白手绢的
2、白手绢块数的 正好是花手绢的块数.
3、花手绢的块数相当于白手绢的
4、白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1、求一个数是另一个数的的几分之几用什么方法?
2、求一个数的几分之几是多少用什么方法?
3、已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.
二、讲授新课
(一)教学例3
1、课件演示:分数除法应用题
2、比较.
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析.
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同.
3、小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几.
(2)求一个数的几分之几是多少.
(3)已知一个数的几分之几是多少求这个数.
4、解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急.
三、巩固练习
(一)应用题
1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.
2、学校有故事书36本,是科技书的 ,科技书有多少本?
3、学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答.
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1、修一条长240千米的公路,修了 ,修了多少千米?
2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1、六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?
2、六一班有学生45人,女生占 .女生有多少人?
3、六一班有男生25人,占全班的' .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2、池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3、池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
《分数除法》数学教案 篇4
教学目标:
使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力.
教学重点:
分数的数感培养,以及与除法的联系.
教学难点:
抽象思维的培养.
教学过程:
一、铺垫复习,导入新知 [课件1]
1、提问:
A.7/8是什么数 它表示什么
B.7÷8是什么运算 它又表示什么
C.你发现7/8和7÷8之间有联系吗
2、揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二、探索新知,发展智能
1、教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:
A.试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就是1/3米.
B.这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C.从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来表示 也就是说整数除法的商也可以用谁来表示
2、教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块
(1)分析:
A.想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B.同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:
A.请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的. ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B.比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3、小结提问:
A.观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B.你能举几个用分数表示整数除法的商的例子吗
C.能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D.b为什么不能等于0
4、看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三、巩固练习 [课件5]
1、用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2、口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3、7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四、全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五、家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算